
ElixirST: A Session-Based Type System for Elixir Modules⋆

Adrian Francalanzaa, Gerard Tabonea,∗

aDept. of Computer Science, University of Malta, Msida, Malta

Abstract

This paper investigates the adaptation of session types to provide behavioural information about
Elixir modules. We devise a type system, called ElixirST, which statically determines whether
functions in an Elixir module observe their endpoint specifications, expressed as session types;
a corresponding tool automating this typechecking has also been constructed. In this paper we
also formally validate this type system. An LTS-based operational semantics for the language
fragment supported by the type system is developed, modelling its runtime behaviour when inter-
acting with the module client. This operational semantics is then used to prove a form of session
fidelity and progress for ElixirST.

Keywords: session types, type systems, Elixir, functional programming

1. Introduction

Modern programming languages offer a variety of abstractions for the construction of concur-
rent programs. In the case of message-passing functional programs, concurrency manifests itself
as spawned computation that exhibits communication as a side-effect, potentially influencing the
execution of other (concurrent) computation. Such side-effects inevitably increase the complex-
ity of the programs produced and lead to new sources of errors. As a consequence, correctness
becomes harder to verify and language support for detecting errors statically, can substantially
decrease the number of concurrency errors.

Elixir [1] is one such example of a functional programming language which supports con-
currency based on the actor model [2, 3]. As depicted in Figure 1, Elixir programs are structured
as a collection of modules that contain functions, the basic unit of code decomposition in the
language. A module only exposes a subset of these functions to external invocations by defining
them as public; these functions act as the only entry points to the functionality encapsulated by a
module. Internally, the bodies of these public functions may then invoke other functions, which
can either be the public ones already exposed or the private functions that can only be invoked
from within the same module. For instance, Figure 1 depicts a module m which contains several

⋆This work has been supported by the MoVeMnt project (No: 217987) of the Icelandic Research Fund and the BehAPI
project funded by the EU H2020 RISE of the Marie Skłodowska-Curie action (No: 778233). This work is also supported
by the Security Behavioural APIs project (No: I22LU01-01) funded by the UM Research Excellence Funds 2021 and the
Tertiary Education Scholarships Scheme (Malta).
∗Corresponding author
Email addresses: adrian.francalanza@um.edu.mt (Adrian Francalanza), gerard.tabone@um.edu.mt

(Gerard Tabone)
Preprint submitted to JLAMP July 4, 2023

g1

g2

...

g j

f1

...

fn

Module m

client1

clientk

...

S 1 S 1

S n S n

private public

Figure 1: An Elixir module consisting of public and private functions, interacting with client processes

public functions (i.e., f1, . . . , fn) and private functions (i.e., g1, . . . , g j). The public function f1
delegates part of its computation by calling the private functions g1 and g j, whereas the body of
the public function fn invokes the other public function f1 when executed. Internally, the body of
the private function g1 calls the other private function g2, which in turn can call g1 again, whereas
the private function g j can recursively call itself.

A prevalent Elixir design pattern is that of a server listening for client requests, which we refer
to as the service handler design pattern.1 For each request, the server spawns a (public) function
to execute independently and act as a dedicated client handler: after the respective process IDs
of the client and the spawned handler are made known to each other, a session of interaction
commences between the two concurrent entities (via message-passing). For instance, in Figure 1,
a handler process running public function f1 is assigned to the session with client client1 whereas
the request from clientk is assigned a dedicated handler running function fn. Although traditional
interface elements such as function parameters (used to instantiate the executing function body
with values such as the client process ID) and the function return value (reporting the eventual
outcome of handled request) are important, the messages exchanged between the two concurrent
parties within a session are equally or more important for software correctness. More specifically,
communication incompatibilities between the interacting parties could lead to various runtime
errors. For example, if in a session a message is sent with an unexpected payload, it could cause
the receiver’s subsequent computation depending on it to crash (e.g. multiplying by a string when
a number should have been received instead). Also, if messages are exchanged in an incorrect

1Some projects which build on this service handler design pattern include etorrent [4] and cowboy [5]. The latter is
an HTTP server which spawns a handler process for each new request; this is scalable since spawning (and maintaining)
actors is extremely efficient in Elixir. In literature, this pattern is also called thread-per-session [6].

2

order, they may cause deadlocks, e.g. Elixir uses blocking receive constructs that wait until a
suitable message arrives, so if a process sends an invalid message, then the other process ends up
waiting forever for a proper message to arrive.

In many cases, the expected protocol of interactions within a session can be statically deter-
mined from the respective endpoint implementations, namely the function bodies; for simplicity,
our discussion assumes that endpoint interaction protocols are dual, e.g. S 1 and S 1 in Figure 1.
Although Elixir provides mechanisms for specifying (and checking) the parameters and return
values of a function within a module, it does not provide any further static guarantees for pro-
grams that adhere to this design pattern due to two major obstacles. Firstly, Elixir does not
provide any support for describing (and verifying) the interaction protocol of a function in terms
of its communication side-effects. Secondly, in open settings, it is often the case that only one
side of the code is available, so it is difficult to obtain static guarantees without the full codebase.

Contribution. We present a type checker to assist Elixir module construction (following the
service handler pattern) in two ways: (a) it allows module designers to formalise the session
endpoint protocol as a session type, and ascribe it to a public function; (b) it statically verifies
whether the body of a function respects the ascribed session type protocol specification. The
type-checker analyses one side of an interaction, i.e., the module side, without requiring access
to the code invoking the module public functions. This analysis assumes that the invoking code is
well-behaved (even though it may or may not have been verified against the session type protocol
specification), e.g. client1 follows S 1 throughout the whole session in Figure 1. The code for the
type-checker, called ElixirST, is available at:

https://github.com/gertab/ElixirST

In this paper we present the underlying type system (Section 3) on which the ElixirST type-
checker is built and discuss its implementation details (Section 6). We also validate the type
system; more concretely, in Section 4 we formalise the runtime semantics of the Elixir language
fragment supported by ElixirST as a labelled transition system (LTS), modelling the execution of
a spawned handler interacting with a client within a session (left implicit). This operational se-
mantics then allows us to prove a conditional form of the session fidelity and progress properties
for the ElixirST type system (Section 5). Intuitively they state that, if the interacting processes
(that are left implicit) follow the prescribed protocol correctly, then the module code being type-
checked is guaranteed to behave correctly w.r.t. the protocol (expressed in terms of the adapted
session fidelity and progress properties).

In this paper we merge and extend the work presented in [7, 8]. In addition to [8], we
include the full typing rules which were originally relegated to the appendix. We also present
two additional sections (adapted from [7]): (a) Section 2 introduces a motivating example; and
(b) Section 6 describes the implementation details of the ElixirST tool, along with a case study.
The validation part of the paper is also expanded, by including all proofs. We also add a new
result, showing that ElixirST observes a form of the progress property.

2. Motivating Example

Consider a simple counter system, adapted from [9], whereby a (server) process stores a
counter total which can be increased by a (client) interacting process or else terminated by this
same (client) process. A sample Elixir Counter module is shown in Listing 1. It offers one

3

https://github.com/gertab/ElixirST

1 defmodule Counter do

2 @spec server(pid, number) :: atom

3 def server(client, total) do

4 receive do

5 {:incr, value} -> server(client, total + value)

6 {:stop} -> terminate(client, total)

7 end

8 end

9
10 @spec terminate(pid, number) :: atom

11 defp terminate(client,total) do

12 send(client, {:value, total})

13 :ok

14 end

15 end

Listing 1: Counter written in Elixir

public function called server on lines 3–8 taking two arguments: the pid of the client, client,
and the initial counter total, total. A process executing this function waits to receive client
requests as messages in its mailbox using the receive do ... end statement; this construct
is blocking, meaning that the process stops until a message with the expected format is received.
The server function accepts two types of messages, namely, increment requests with label
:incr carrying payload val, or termination requests denoted by the label :stop. This function
branches accordingly: for increment requests, it recurses while updating the running total to
total+value on line 5, whereas termination requests on line 6 are handled by calling the private
function terminate. Private functions, defined using defp, are only visible from within a
module. In this case, the function terminate (defined on lines 11–14) sends a :value message
carrying the final total value total to the client process and terminates with the atom value
:ok. Assuming that a client process carrying a pid bound to variable cid already exists, a counter
server linked to cid initialised with a running total of 0 can be launched using the statement:

sid = spawn(Counter, :server, [cid, 0]).

Elixir conducts dynamic typechecking to catch runtime errors. In addition, @spec annota-
tions such as those on lines 2 and 10 can help with detecting potential errors at compile-time.
However, the language offers limited support to assist the static detection of errors relating to
the concurrent messaging. For instance, it might not be immediately apparent that the payload
carried by a :incr request should be a number value. Similarly, the code in Listing 1 does
not necessarily convey enough information that the intended interaction with a server process
should follow the protocol depicted in Figure 2. This abstract specification states that a server
can be incremented an arbitrary number of times, followed by a single termination request (i.e.,
no further increment or termination requests can succeed it).

From the perspective of the server, the entire session of interactions can be formalised as the
session type (called counter) below:

counter = &
{

?incr(number).counter,
?stop().!value(number).end

}
(1)

It states that the server can branch (i.e., &) in two ways: if it receives (i.e., ?) an incr label
with a number payload, the server recurses back to the beginning; and if it receives a stop label,

4

ClientServer

re
cu

rse

incr(number)

stop()

value(number)

choice

1

2

Figure 2: Counter protocol

it has to send (i.e., !) back a label value with a payload of type number (i.e., !value(number)).
No further interactions are allowed when the end statement is reached. Accordingly, the client
has to follow a compatible protocol, such as the dual of the same session type.

counter = ⊕
{

!incr(number).counter,
!stop().?value(number).end

}
(2)

Concretely, it can repeatedly make a choice (i.e., ⊕) to send one of two labels, either increment
or stop. The former ensures that it recurses back to the beginning, while the latter results in the
client receiving a value of type number.

1 defmodule Counter do

2 use ElixirST

3
4 @session "counter = &{?incr(number).counter,

5 ?stop().!value(number).end}"

6 @spec server(pid, number) :: atom

7 def server(client, value) do

8 receive do

9 {:incr, value} -> server(client, total + value)

10 {:stop} -> terminate(client, total)

11 end

12 end

13
14 @spec terminate(pid, number) :: atom

15 defp terminate(client,total) do

16 send(client, {:value, total})

17 :ok

18 end

19
20 @dual "counter"

21 @spec client(pid) :: number

22 def client(server) do

23 ...

24 end

25 end

Listing 2: Counter annotated with session types

This paper proposes an approach whereby module definitions are augmented with a @session
annotation for functions, as shown in Listing 2. Whereas line 4 requires the public function

5

server to adhere to the session type counter, no session annotation is required for the private
function terminate on line 15. Lines 22–24 present a case in which the client code is defined
as a public function within the same module; in such a case, we can annotate it with the @dual

information on line 20.
Our proposed session type annotations serve two important purposes. On the one hand, they

provide a high-level (yet formal) specification as to how a public function is to be interacted
with, without the need to look inside its implementation, as in the case of line 4. For instance,
by inspecting the counter session type on line 4 of Listing 2, one can immediately tell that a
process running function server accepts two types of messages with labels incr or stop. On
the other hand, they allow function implementations to be typechecked against such specifica-
tions. E.g., we are able to statically check that the function server (and its ancillary function
terminate) adheres to the protocol dictated by session type counter on line 4. We can also re-
ject the problematic client implementation given in Listing 3 at compile-time, on the grounds
that it violates the dual session type of counter. Concretely, the client selects an illegal choice
decr on line 23, since the server cannot handle an incoming message labelled decr. The client
also expects to receive a value with a number (line 26) after ‘forgetting’ to send a termination
request (i.e., a message with a stop label). Both cases breach the counter protocol.

20 @dual "counter"

21 def client(server) do

22 send(server, {:incr, 5})

23 send(server, {:decr, 2})

24 # send(server, {:stop})

25
26 receive do

27 {:value, num} -> num

28 end

29 end

Listing 3: Counter client with issues

3. A Formal Analysis

We introduce a core Elixir subset and define the typing rules for the ElixirST type system.

3.1. The Actor Model

Elixir uses the actor concurrency model [2, 3]. It describes computation as a group of con-
current processes, called actors, which do not share any memory and interact exclusively via
asynchronous messages. Every actor is identified via a unique process identifier (pid) which is
used as the address when sending messages to a specific actor. Messages are communicated
asynchronously, and stored in the mailbox of the addressee actor. An actor is the only entity that
can fetch messages from its mailbox, using pattern matching. This allows us to provide a static
behavioural abstraction for public functions used for the service handler design pattern. Apart
from sending and reading messages, an actor can also spawn other actors and obtain their fresh
pid as a result; this pid can be communicated as a value to other actors via messaging, which
allows for a dynamically linked structure amongst active actors.

6

3.2. Session Types
The ElixirST type system assumes the standard expression types, including basic types, such

as boolean, number, atom and pid, and inductively defined types, such as tuples, {T1, . . . , Tn},
and lists, [T] ; these already exist in the Elixir language and they are dynamically checked. The
type system extends these with (binary) session types, which are used to statically check the
message-passing interactions.

Expression types T F boolean | number | atom | pid | {T1, . . . , Tn} | [T]

Session types S F &
{
?li
(
T̃i
)
.S i
}
i∈I Branch

| ⊕
{
!li
(
T̃i
)
.S i
}
i∈I Choice

| rec X . S Recursion

| X Variable

| end Termination

The branching construct, &
{
?li
(
T̃i
)
.S i
}
i∈I , requires the code to be able to receive a message that

is labelled by any one of the labels li, with the respective list of values of type T̃i (where T̃
stands for T 1, . . . ,T k for some k ≥ 0), and then adhere to the continuation session type S i. The
choice construct is its dual and describes the range and format of outputs the code is allowed
to perform at that point of execution. In both cases, the labels need to be pairwise distinct.
Recursive types are treated equi-recursively [10], and used interchangeably with their unfolded
counterparts. For brevity, the symbols & and ⊕ are occasionally omitted for singleton options,
e.g., ⊕

{
!l(number).S 1

}
is written as !l(number).S 1; similarly end may be omitted as well, e.g.,

?l() stands for ?l().end. The dual of a session type S is denoted as S (shown in Definition 3.1).

Definition 3.1 (Duality).

&
{
?li
(
T̃i
)
.S i
}
i∈I = ⊕

{
!li
(
T̃i
)
.S i
}
i∈I rec X . S = rec X . S

⊕
{
!li
(
T̃i
)
.S i
}
i∈I = &

{
?li
(
T̃i
)
.S i
}
i∈I X = X end = end ■

3.3. Elixir Syntax
Elixir programs are organised as modules, i.e., defmodule m do P̃ D̃ end. Modules are

defined by their name, m, and contain two sets of public D̃ and private P̃ functions, declared as
sequences. Public functions, def f (y, x̃) do t end, are defined by the def keyword, and can
be called from any module. In contrast, private functions, defp f (y, x̃) do t end, can only be
called from within the defining module. Functions are defined by their name, f , and their body,
t, and parametrised by a sequence of distinct variables, y, x̃, the length of which, |y, x̃|, is called
the arity. The first parameter (y), is reserved for the pid of the dual process. Although a module
may contain functions with the same name, their arity must be different, so we refer to a function
with name f and arity n as f/n.

In Elixir, function parameters and return values can be assigned a type using the @spec an-
notation, f (T̃) :: T , describing the parameter types, T̃ , and the return type, T . This information
is then used by the Dialyzer to perform static checking using success typing [11]. In our for-
malisation, we require that functions are annotated by their type specification, denoted by B in

7

Modules M F defmodule m do P̃ D̃ end

Public functions DF K B def f (y, x̃) do t end

Private functions PF B defp f (y, x̃) do t end

Type annotations BF @spec f
(
T̃
)

:: T

Session annotations K F @session “X = S ” | @dual “X”

Expressions eF w | not e | e1 ⋄ e2 | [e1 | e2] | {e1, . . . , en}

Operators ⋄F < | > | <= | >= | == | != | + | − | ∗ | / | and | or
Basic values bF boolean | number | atom | pid | []

Values vF b | [v1 | v2] | {v1, . . . , vn}

Identifiers wF b | x

Patterns pF w | [w1 | w2] | {w1, . . . , wn}

Terms tF e

| x = t1; t2
| send (w, {:l, e1, . . . , en})

| receive do
({
:li, p1

i , . . . , pn
i

}
→ ti
)

i∈I
end

| f (w, e1, . . . , en)

| case e do (pi → ti)i∈Iend

Figure 3: Elixir syntax

Figure 3. In addition to this, we decorate public functions with session types, defined in Sec-
tion 3.2, to describe their side-effect protocol. Public functions can be annotated directly using
@session “X = S ”, or indirectly using the dual session type, @dual “X”, where X = S is
shorthand for rec X . S .

The body of a function consists of a term, t, which can take the form of an expression,
a let statement, a send or receive construct, a case statement or a function call; see Fig-
ure 3. In the case of the let construct, x = t1; t2, the variable x is a binder for the vari-
ables in t2, acting as a placeholder for the value that the subterm t1 evaluates to. We write
t1; t2, as syntactic sugar for x = t1; t2 whenever x is not used in t2. The send statement,
send (x, {:l, e1, . . . , en}), allows a process to send a message to the pid stored in the vari-
able x, containing a message {:l, e1, . . . , en}, where :l is the label. The receive construct,
receive do

({
:li, p1

i , . . . , pn
i

}
→ ti
)

i∈I
end, allows a process to receive a message tagged with a

label that matches one of the labels :li and a list of payloads that match the patterns p1
i , . . . , pn

i ,
branching to continue executing as ti. Patterns, p, defined in Figure 3, can take the form of a
variable, a basic value, a tuple or a list (e.g.

[
x | y
]
, where x is the head and y is the tail of the

list). The remaining constructs are fairly standard. Variables in patterns p1
i , . . . , pn

i employed
by the receive and case statements are binders for the respective continuation branches ti. In
our formalisation, the case construct is assumed to have a catch-all pattern which acts as a fail-

8

safe mechanism for unmatchable values. This provides stronger static guarantees, however, it
is more conservative when compared to Elixir’s common let it crash philosophy, which allows
unmatched values to crash the whole process.

Terms can also take the form of an expression, e. An expression can be a variable, basic
value (e.g. boolean), list, tuple, or other operations (e.g. +, <, and). Note that in the original
Elixir syntax, there is no separation between terms (t) and expressions (e). However, with this
distinction we are able to keep the type system in Section 3.4 more manageable and concise. We
assume standard notions of open (i.e., fv(t) , ∅) and closed (i.e., fv(t) = ∅) terms and work up to
alpha-conversion of bound variables.

3.4. Type System

Our session type system statically verifies that public functions within a module observe the
communication protocols ascribed to them. It uses three environments:

Variable binding env. ΓF ∅ | Γ, x : T

Session typing env. ∆F ∅ | ∆, f/n : S

Function information env. Σ F ∅ | Σ, f/n :

params = x̃, param types = T̃ ,

body = t, return type = T, dual = y

The variable binding environment, Γ, maps (data) variables to basic types (x : T). We write

Γ, x : T to extend Γ with the new mapping x : T , where x < dom(Γ). The session typing envi-
ronment, ∆, maps function names and arity pairs to their session type (f/n : S); this will be used
when recursing (i.e., function calls) to check whether a function is already mapped to a session
type. If a function f/n has a known session type, then it can be found in ∆, i.e., ∆(f/n) = S .
Each module has a static function information environment, Σ, that holds information related
to the function definitions. For a function f , with arity n, Σ(f/n) returns the tail list of param-
eters (params) and their types (param types), the function’s body (body), and its return type
(return type). It also returns the static variable name that represents the interacting process’
pid (dual). We assume that function information environment, Σ, is well-formed, meaning that
all functions mapped (f/n ∈ dom(Σ)) observe the following condition requiring that the body of
function f/n is closed, i.e., for Σ(f/n) = Ω:

fv
(
Ω.body

)
\
(
Ω.params ∪ {Ω.dual}

)
= ∅

Intuitively, if we look at a function’s body, its only free variables will be its parameters (i.e.,
params and dual).

Session typechecking is initiated by analysing an Elixir module, rule [tModule]. A module
is typechecked by inspecting each of its public functions, ascertaining that they correspond and
fully consume the session types ascribed to them. The rule uses three helper functions. The
function functions(D̃) returns a list of all function names (and arity) of the public functions (D̃) to
be checked individually. The function sessions(D̃) obtains a mapping of all the public functions
to their expected session types stored in ∆. This ensures that when a function f with arity n
executes, it adheres to the session type associated with it using either the @session or @dual
annotations. The helper function details(−) populates the function information environment (Σ)
with details about all the public (D̃) and private functions (P̃) within the module.

9

∆ = sessions(D̃) Σ = details(P̃ D̃)

∀ f/n ∈ functions(D̃) ·

∆(f/n) = S Σ (f/n) = Ω
Ω.params = x̃ Ω.param types = T̃
Ω.body = t Ω.dual = y
Ω.return type = T
∆ ·
(
y : pid, x̃ : T̃

)
⊢

y
Σ S ▷ t : T ◁ end

[tModule]
⊢ defmodule m do P̃ D̃ end

For every public function f/n in functions(D̃), [tModule] checks that its body adheres to it
session type using the highlighted term typing judgement detailed below:

∆ · Γ ⊢
w
Σ S ▷ t : T ◁ S ′

environmentsvariable binding
session typing &

session typesresidual&initialdual pid

term expression type

This judgement states that “the term t can produce a value of type T after following an interac-
tion protocol starting from the initial session type S up to the residual session type S ′ (akin to
parameterised monads [12]), while interacting with a dual process with pid identifier w. This
typing is valid under some session typing environment ∆, variable binding environment Γ and
function information environment Σ.” Since the function information environment Σ is static for
the whole module (and by extension, for all sub-terms), it is left implicit in the term typing rules.
We consider each rule in detail.

∀i ∈ I ·

∀ j ∈ 1..n ·

 simplepat(p j
i ,T

j
i)

⊢wpat p j
i : T j

i ▷ Γ j
i

∆ ·
(
Γ, Γ1

i , . . . , Γ
n
i
)
⊢w S i ▷ ti : T ◁ S ′

[tBranch]
∆ · Γ ⊢w &

{
?li
(
T̃i
)
.S i
}
i∈I ▷ receive do ({:li, p̃i} → ti)i∈Iend : T ◁ S ′

The receive construct is typechecked using the [tBranch] rule. It expects an (external) branch-
ing session type &

{
. . .
}
, where each branch in the session type must match with a corresponding

branch in the receive construct, where both the labels (li) and payload types (T̃i) correspond.
Each receive branch is checked w.r.t. the common type T and a common residual session type
S ′. The types within each receive branch are computed using the pattern typing judgement,
⊢wpat p : T ▷ Γ, which assigns types to variables present in patterns (explained later in Figure 6).

To ensure that all possible patterns are exhausted, we use Simple Patterns to filter out pattern
structures such as lists and basic values. As a result, if a receive construct (contains exclusively
simple patterns) is well-typed against the branching session type, then we are certain that any

10

valid incoming messages can be matched with one of the available branches. This is further
discussed later in Proposition 3. Simple patterns do not limit the expressivity of our language:
complex patterns can still be expressed using a combination of (simple) receives and inner
case constructs, which allow us to use patterns that do not block receives while postponing
more specific patterns to the subsequent case matching.

Definition 3.2 (Simple Patterns). The predicate simplepat(p,T) only accepts patterns that exclu-
sively contain variables and top-level tuples, eliminating the possibility of patterns with structures
such as lists or basic values. It is defined as follows:

simplepat(p,T) def
=
(
(p = {x1, . . . , xn} and T = {T1, . . . , Tn}) or p = x

)
■

Example 3.1. Consider the following receive construct (following the ?incr(number) . . . ses-
sion type) which does not satisfy simplepat:

receive do {:incr, 5} → . . . end

This can only accept messages of the form {:incr, 5}, so other messages that are valid for the
?incr(number) . . . session type, e.g. {:incr, 9}, cannot be processed, since not all valid patterns
are exhausted. In contrast, simplepat limits us to branches such as the one below where the
variable (called value) can accept any value:

receive do {:incr, value} → . . . end ■

Another crucial typing rule is [tChoice], which typechecks the sending of messages.

µ ∈ I ∀ j ∈ 1..n ·
{
Γ ⊢exp e j : T j

µ

}
[tChoice]

∆ · Γ ⊢w ⊕
{
!li
(
T̃i
)
.S i
}
i∈I ▷ send

(
w,
{
:lµ, e1, . . . , en

})
: {atom, T̃µ}◁ S µ

This rule requires an internal choice session type ⊕
{
. . .
}
, where the label tagging the message

to be sent must match with one of the labels (lµ) offered by the session choice. The message
payloads must also match with the corresponding types associated with the label (T̃µ of lµ) stated
via the expression typing judgement Γ ⊢exp e : T (see Figure 5). The resulting expression type
of the send construct is equivalent to the type of message being sent, i.e.,

{
:lµ, ẽi

}
has type

{atom, T̃µ}. The typing rule also checks the pid of the addressee of the send statement which
must match with the dual pid (w) in the judgment itself to ensure that messages are only sent to
the correct addressee.

∆ (f/n) = S ∀i ∈ 2..n ·
{
Γ ⊢exp ei : Ti

}
Σ (f/n) = Ω Ω.return type = T Ω.param types = T̃

[tKnownCall]
∆ · Γ ⊢w S ▷ f (w, e2, . . . , en) : T ◁ end

Since public functions are decorated with a session type explicitly using the @session (or
@dual) annotation, they are listed in dom(∆). Calls to public functions are typechecked using the
[tKnownCall] rule, which verifies that the expected initial session type is equivalent to the func-
tion’s known session type (S) obtained from the session typing environment, i.e., ∆ (f/n) = S .

11

∆ · Γ ⊢w S ▷ t1 : T ′ ◁ S ′′ ∆ · (Γ, x : T ′) ⊢w S ′′ ▷ t2 : T ◁ S ′ x , w
[tLet]

∆ · Γ ⊢w S ▷ x = t1; t2 : T ◁ S ′

Γ ⊢exp e : U ∆ · (Γ, xall : U) ⊢w S ▷ tall : T ◁ S ′

∀i ∈ I ·

 ⊢
w
pat pi : U ▷ Γ′i

∆ ·
(
Γ, Γ′i

)
⊢w S ▷ ti : T ◁ S ′

[tCase]
∆ · Γ ⊢w S ▷ case e do (pi → ti)i∈I (xall → tall) end : T ◁ S ′

Γ ⊢exp e : T
[tExpression]

∆ · Γ ⊢w S ▷ e : T ◁ S

Figure 4: Remaining term typing rules

Without typechecking the function’s body, which is done in rule [tModule], this rule ensures
that the parameters have the correct types (using the expression typing rules). From the check
performed in rule [tModule], it can also safely assume that this session type S is fully con-
sumed, thus the residual type becomes end. Rule [tKnownCall] also ensures that the pid (w) is
preserved during a function call, by requiring it to be passed as a parameter and comparing it to
the expected dual pid (i.e., ∆ · Γ ⊢ w S ▷ f

(
w , . . .

)
: T ◁ end).

Σ (f/n) = Ω f/n < dom(∆) Ω.dual = y

Ω.params = x̃ Ω.param type = T̃ Ω.body = t Ω.return type = T

∀i ∈ 2..n ·
{
Γ ⊢exp ei : Ti

}
(∆, f/n : S) ·

(
y : pid, x̃ : T̃

)
⊢y S ▷ t : T ◁ S ′

[tUnknownCall]
∆ · Γ ⊢w S ▷ f (w, e2, . . . , en) : T ◁ S ′

In contrast, a call to a (private) function, f/n, with an unknown session type associated to it is
typechecked using the [tUnknownCall] rule. As in the other rule, it ensures that parameters
have the correct types (Γ ⊢exp ei : Ti). In addition, it also analyses the function’s body t (obtained
from Σ) with respect to the session type S inherited from the initial session type of the call,
This session type is appended to the session typing environment ∆ for future reference, i.e.,
∆′ = (∆, f/n : S) which allows it to handle recursive calls to itself; should the function be called
again, rule [tKnownCall] is used thus bypassing the need to re-analyse its body.

The remaining rules (Figure 4) make up the functional aspect of the language. The let state-
ment x = t1; t2 is typechecked using the rule [tLet]. The initial session type S is first transformed
to S ′ due to some actions in t1 and finally becomes S ′′ after the actions in t2. The rule [tCase]
checks the case construct, where each case has to match the corresponding type T and session
type S . The final pattern (xall) of the case construct acts as a catch-all alternative to ensure that
all values are matched to at least one case. The catch-all case is sometimes omitted for ease of

12

readability. Finally, [tExpression] checks all expressions e using expression typing. Expressions
do not have a side effect, so the continuation session type S remains unchanged.

Expression Typing. Expressions are typechecked using the judgement Γ ⊢exp e : T , where ex-
pression e has type T subject to the variable environment Γ. The expressions typing rules (Fig-
ure 5) are adapted from [13]. Rule [tBasic] checks the type of basic values using the function
type, which returns the type for basic values, e.g., type(true) = boolean. Rule [tVariable]
checks that variables have the correct type, as specified in Γ. Rules [tTuple], [tEList] and
[tList] check the types of tuples, empty lists and lists, respectively. Rule [tArithmetic] en-
sures that numbers are used when doing arithmetic operations. The remaining rules, [tBoolean],
[tNot] and [tComparisons], are analogous.

Pattern Typing. In the term typing rules [tBranch] and [tCase], new variables are introduced as
a result of pattern matching. These need to be assigned to their respective type for typechecking
purposes. This is obtained via the judgement ⊢p

pat T : Γ ▷ defined in Figure 6, which states
that all variables in a pattern p are collected (with their type) in Γ. Basic values are checked in
[tpBasic], and new variables are introduced in [tpVariable]. The latter also ensures that the pid of
the dual process remains unchanged (i.e., x , w), which allows to statically locate the destination
pid of the messages. Each element in a tuple is checked individually for either values or variables
([tpTuple]). Lists are checked using [tpEList] and [tpList]. Multiple variable environments Γ
and Γ′ are joined together as Γ, Γ′ (their domains must be distinct).

3.5. Typing in Action
Recall the counter system from Listing 2, which contains two public functions, server and

client, annotated with the session types, counter and counter, respectively defined in eqs. (1)
and (2). We discuss briefly how the type system of Section 3.4 can be used to statically analyse
this Elixir module.

Typechecking starts from the [tModule] rule (⊢ M), and the judgement:

⊢ defmodule Counter do P̃ D̃ end

where D̃ contains the functions server and client, while P̃ contains the private function
terminate. The premise of [tModule] requires that all public functions are checked individ-
ually using the behavioural typing judgement: ∆ · Γ ⊢wΣ S ▷ t : T ◁ S ′ (Section 3.4). Starting
with fn = server2, the initial session type, S , is set to counter and the expected residual session
type, S ′, is end, since functions are only well-typed if they fully consume the session type. For
the client function, the initial session type S is computed to get the dual type of counter, given
in eq. (2). We focus on the behavioural typing of the server function. The function body, t, of
server consists of the following:

t =

receive do

{:incr, value} -> server(client, total + value)

{:stop} -> terminate(client, total)

end

This receive statement is typechecked as the judgement below, using the [tBranch] rule:

∆ · Γ ⊢w &
{

?incr(number).counter,
?stop().S 1

}
▷ t : atom ◁ end

13

Γ ⊢exp e : T
∀i ∈ 1..n ·

{
Γ ⊢exp ei : Ti

}
[tTuple]

Γ ⊢exp {e1, . . . , en} : {T1, , . . . , Tn}

type(b) = T
[tBasic]

Γ ⊢exp b : T
Γ (x) = T

[tVariable]
Γ ⊢exp x : T

Γ ⊢exp e1 : T Γ ⊢exp e2 : [T]
[tList]

Γ ⊢exp [e1 | e2] : [T]
[tEList]

Γ ⊢exp [] : [T]

Γ ⊢exp e1 : number Γ ⊢exp e2 : number ⋄ ∈ {+, −, ∗, /}
[tArithmetic]

Γ ⊢exp e1 ⋄ e2 : number

Γ ⊢exp e1 : boolean Γ ⊢exp e2 : boolean ⋄ ∈ {and, or}
[tBoolean]

Γ ⊢exp e1 ⋄ e2 : boolean

⋄ ∈ {<, >, <=, >=, ==, !=}
Γ ⊢exp e1 : T Γ ⊢exp e2 : T

[tComparisons]
Γ ⊢exp e1 ⋄ e2 : boolean

Γ ⊢exp e : boolean
[tNot]

Γ ⊢exp not e : boolean

Figure 5: Expression typing rules

⊢wpat p : T ▷ Γ

∅ ⊢exp b : T b , []
[tpBasic]

⊢wpat b : T ▷ ∅
x , w[tpVariable]

⊢wpat x : T ▷ x : T

∀i ∈ 1..n ·
{
⊢wpat wi : Ti ▷ Γi

}
[tpTuple]

⊢wpat {w1, . . . , wn} : {T1, . . . , Tn} ▷ Γ1, . . . , Γn

⊢wpat w1 : T ▷ Γ1 ⊢wpat w2 : [T] ▷ Γ2
[tpList]

⊢wpat [w1 | w2] : [T] ▷ Γ1, Γ2
[tpEList]

⊢wpat [] : [T] ▷ ∅

Figure 6: Pattern typing rules

14

where S 1 = !value(number).end and w = client.
The session type in [tBranch] dictates that two branches are required, labelled incr and

stop. The terms inside the branches must match with the continuation session type of the cor-
responding session type (i.e., counter and S 1, respectively). For the first branch (labelled incr),
the continuation term is a known function call (∆(server2) = counter); therefore, we use the
[tKnownCall] rule:

∆ · Γ′ ⊢w counter ▷ server(client, total+value) : atom ◁ end

The term of the second branch (labelled stop) needs to match with the session type S 1. This
branch makes a call to a private function (terminate). Since terminate1 is not in the domain
of ∆, we proceed to inspect its body using the rule [tUnknownCall]. Recall that private func-
tions are not annotated with session types. Accordingly, rule [tUnknownCall] requires us to
inherit the outstanding session S 1 as the specification for typing this judgement, which follows
immediately using the [tLet] rule:

...[tLet]
(∆, terminate1 : S 1) · Γ′′ ⊢w S 1 ▷

[
send(w, {:value, total})

:ok

]
: atom ◁ end

[tUnknownCall]
∆ · Γ ⊢w S 1 ▷ terminate(client, total) : atom ◁ end

Note that Γ′′ contains the type information for the client and total variable names, and
the session typing judgement (∆) is extended to contain the session typing information for the
function terminate1. To finish our typing analysis, we have to consider the two premises of the
[tLet] rule. This rule checks two sub-terms in succession, as follows:

(∆, terminate1 : S 1) · Γ′′ ⊢w S 1 ▷ send(w, {:value, total}) : U ◁ end (3)
(∆, terminate1 : S 1) · Γ′′ ⊢w S 1 ▷ :ok : atom ◁ end (4)

Equation (3) contains a send contruct that sends a message labelled value. This matches
with the labels offered in S 1, which is checked using [tChoice]. Finally, Equation (4) is type-
checked using [tExpression], which finalises our analysis.

As a continuation of this, consider the first two lines of the misbehaving client function
body from Listing 3, to be typechecked against counter from eq. (2):

send(server, {:incr, 5})

send(server, {:decr, 2})

The first send statement is checked successfully using the [tLet] and the [tChoice] rules.
The next send statement also needs to be checked using [tChoice]:

∆′ · Γ′′′ ⊢w ⊕

{
!incr(number).counter,
!stop().S 1

}
▷ send(server, {:decr, 2}) : number ◁ end

However, the [tChoice] rule attempts to match decr with a nonexistent choice from the session
type. Thus, this client function is deemed to be ill-typed.

15

3.6. Elixir System

Natively, Elixir can create actors using its spawn functions (e.g. spawn/3), which take a
function (and its arguments), spawns it and returns its pid. ElixirST extends this to provide
a bespoke spawning function called session/4 which allows the initiation of two concurrent
processes executing in tandem as part of a session. This session/4 function takes two pairs
of arguments: two references of function names (that will be spawned), along with their list of
arguments. Its participant creation flow is shown in Figure 7. Initially the actor (pre-server) is
spawned, passing its pid (ιserver) to the second spawned actor (pre-client). Then, pre-client relays
back its pid (ιclient) to pre-server. In this way, both actors participating in a session become aware
of each other’s pids. From this point onwards, the two actors execute their respective function
to behave as the participants in the binary session; the first argument of each running function
is initiated to the respective pid of the other participant. Figure 7 shows that the server process
executes the body t, where it has access to the mailbox, which we denote asM. As it executes,
messages may be sent or received (shown by the action α) and stored in the (modified) mailbox
M′. The specific working of these transitions is explained in the following section.

4. Operational Semantics

We describe the operational semantics of the Elixir language subset of Figure 3 as a labelled
transition system (LTS) [14] describing how a handler process within a session executes while
interacting with the session client (left implicit), as outlined in Figure 1. The transition t

α
−→ t′

describes the fact that a handler process in state t performs an execution step to transition to the
new state t′, while possibly interacting with the client via the action α as a side-effect. External
actions are visible by, and bear an effect on the client, whereas internal actions do not. In our
case, an action α can take the following forms:

α ∈ Act F ι! {:l, ṽ} Output message to ι tagged as :l with payload ṽ

| ? {:l, ṽ} Input message tagged as :l with payload ṽ

| f/n Call function f with arity n

| τ Internal reduction step

external action

internal action

Both output and input actions constitute external actions that affect either party in a session;
the type system from Section 3.4 disciplines these external actions. Internal actions, include
silent transition (τ) and function calls (f/n); although the latter may be denoted as a silent action,

pre-server

pre-client c l i en tFn (ιserver ,
arg2 ,
arg3 , . . .)

serverFn (ιclient ,
arg2 ,
arg3 , . . .)

ιserver ιclient

[t ◁M]ιserver

[. . .]ιclient

[t′ ◁M′]ιserver
α . . .α′

. . .

Figure 7: Spawning two processes (green boxes represent spawned concurrent processes)

16

the decoration facilitates our technical development. We note that, function calls can only transi-
tion subject to a well-formed function information environment (Σ), which contains details about
all the functions available in the module. Since Σ remains static during transitions, we leave it
implicit in the transitions rules.

t
α
−→
Σ

t′ t1
α
−→ t′1[rLet1]

x = t1; t2
α
−→ x = t′1; t2

[rLet2]
x = v; t

τ
−→ t [v/x]

ek → e′k[rChoice1]
send (ι, {:l, v1, . . . , vk−1, ek, . . . , en})

τ
−→ send

(
ι,
{
:l, v1, . . . , vk−1, e′k, . . . , en

})
[rChoice2]

send (ι, {:l, v1, . . . , vn})
ι!{:l, v1, ..., vn}
−−−−−−−−−−→ {:l, v1, . . . , vn}

∃ j ∈ I l j = l match(p̃ j, v1, . . . , vn) = σ
[rBranch]

receive do ({:li, p̃i} → ti)i∈Iend
?{:l, v1, ..., vn}
−−−−−−−−−−→ t jσ

ek → e′k[rCall1]
f (v1, . . . , vk−1, ek, . . . , en)

τ
−→ f
(
v1, . . . , vk−1, e′k, . . . , en

)
Σ (f/n) = Ω Ω.body = t Ω.params = x2, . . . , xn Ω.dual = y

[rCall2]
f (ι, v2, . . . , vn)

f/n
−−→ t [ι/y] [v2 , . . . , vn/x2 , . . . , xn]

e→ e′[rCase1]
case e do (pi → ti)i∈Iend

τ
−→ case e′ do (pi → ti)i∈Iend

∃ j ∈ I match(p j, v) = σ
[rCase2]

case v do (pi → ti)i∈Iend
τ
−→ t jσ

e→ e′
[rExpression]

e
τ
−→ e′

Figure 8: Term transition semantic rules

The transitions are defined by the term transition rules listed in Figure 8. Rules [rLet1] and
[rLet2] deal with the evaluation of a let statement, x = t1; t2 modelling a call-by-value semantic,
where the first term t1 has to transition fully to a value before being substituted for x in t2 denoted
as [v/x] (or [v1 , v2/x1 , x2] for multiple substitutions). The send statement, send (ι, {:l, e1, . . . , en}),
evaluates by first reducing each part of the message to a value from left to right. This is carried
out via rule [rChoice1] which produces no observable side-effects. When the whole message
is reduced to a tuple of values {:l, v1, . . . , vn}, rule [rChoice2] performs the actual message
sending operation. This transition produces an action ι! {:l, v1, . . . , vn}, where the message
{:l, v1, . . . , vn} is sent to the interacting process with a pid value of ι. The operational semantics
of the receive construct, receive do ({:li, p̃i} → ti)i∈Iend, is defined by rule [rBranch]. When
a message is received (i.e., α = ? {:l, ṽ}), it is matched with a valid branch from the receive
construct, using the label :l. Should one of the labels match (∃ j ∈ I such that :l j = :l), the
payload of the message (̃v) is compared to the corresponding patterns in the selected branch (p̃ j)

17

e→ e′ e1 → e′1[reOperation1]
e1 ⋄ e2 → e′1 ⋄ e2

e2 → e′2[reOperation2]
v1 ⋄ e2 → v1 ⋄ e′2

v = v1 ⋄ v2[reOperation3] v1 ⋄ v2 → v
e→ e′[reNot1]

not e→ not e′
v′ = ¬v[reNot2]

not v→ v′

e1 → e′1[reList1]
[e1 | e2]→

[
e′1 | e2

] e2 → e′2[reList2]
[v1 | e2]→

[
v1 | e′2

]
ek → e′k[reTuple]

{v1, . . . , vk−1, ek, . . . , en} → {v1, . . . , , vk−1, e′k, . . . , en}

Figure 9: Expression reduction rules

using match(p̃ j, ṽ). If the values match with the pattern, the match function (Definition 4.1)
produces the substitutions σ, mapping the matched variables in the pattern p̃ j to values from ṽ.
This substitution σ is then used to instantiate the free variables in continuation branch t j.

Definition 4.1 (Pattern Matching). The match function pairs patterns with a corresponding
value, resulting in a sequence of substitutions (called σ), e.g., match(p, v) = [v1/x1] [v2/x2] =
[v1 , v2/x1 , x2]. The match function builds a meta-level list of substitutions, which should not be
confused with the lists defined by the Elixir syntax in Figure 3.

match(p̃, ṽ) def
= match(p1, v1), . . . , match(pn, vn)

where p̃ = p1, . . . , pn and ṽ = v1, . . . , vn

match(p, v) def
=

[] p = b, v = b
[v/x] p = x
match(w1, v1), match(w2, v2) p = [w1 | w2] , v = [v1 | v2]
match(w1, v1), . . . , match(wn, vn) p = {w1, . . . , wn} and

v = {v1, . . . , vn} ■

Example 4.1. For the pattern p1 = {x, 2, y} and the value tuple v1 = {8, 2, true}, match(p1, v1) =
σ where σ = [8/x] [true/y] (written also as σ = [8, true/x, y]). However for pattern p2 = {x, 2, false}, the
operation match(p2, v1) fails, since p2 expects a false value as the third element, but finds a true
value instead. ■

Using rule [rCall1] from Figure 8, a function call is evaluated by first reducing all of its
parameters to a value, using the expression reduction rules in Figure 9; again this models a
call-by-value semantics. Once all arguments have been fully reduced, [rCall2], the implicit
environment Σ is queried for function f with arity n to fetch the function’s parameter names and
body. This results in a transition to the function body with its parameters instantiated accordingly,
t [ι/y] [v2 , . . . , vn/x2 , . . . , xn], decorated by the function name, i.e., α = f/n. Along the same lines a case
construct first reduces the expression which is being matched using rule [rCase1]. Then, rule

18

[rCase2] matches the value with the correct branch, using the match function, akin to [rBranch].
Whenever a term consists solely of an expression, it silently reduces using [rExpression] using
the expression reduction rules e→ e′ of Figure 9. These are fairly standard.

5. Validation of the ElixirST Type System

We validate the static properties imposed by the ElixirST type system, overviewed in Sec-
tion 3, by establishing a relation with the runtime behaviour of a typechecked Elixir program,
using the transition semantics defined in Section 4. Broadly, we establish a form of type preser-
vation, which states that if a well-typed term transitions, the resulting term then remains well-
typed [10]. However, our notion of type preservation, needs to be stronger to also take into
account (i) the side-effects produced by the execution; and (ii) the progression of the execution
with respect to protocol expressed as a session type. Following the long-standing tradition in
the session type community, these two aspects are captured by the refined preservation property
called session fidelity [15, 16]. This property ensures that: (i) the communication action produced
as a result of the execution of the typed process is one of the actions allowed by the current stage
of the protocol; and that (ii) the resultant process following the transition is still well-typed w.r.t.
the remaining part of the protocol that is still outstanding. We also establish a conditional form
of progress, where well-typed processes are either a value, or else they can safely transition to a
new term, producing an internal (or external) action.

Before embarking on the proofs for session fidelity and progress, we prove an auxiliary
proposition that acts as a sanity check for our operational semantics of Section 4. We note
that the operational semantics assume that only closed programs are executed; an open program
(i.e., a program containing free variables) is seen as an incomplete program that cannot execute
correctly due to missing information. To this end, Proposition 1 ensures that a closed term
remains closed even after transitioning.

Proposition 1 (Closed Term). If fv(t) = ∅ and t
α
−→ t′, then fv(t′) = ∅

Proof. By induction on the structure of t. Refer to Appendix B.1 for details.

The statement of the session fidelity property relies on the definition of a partial function
called after (Definition 5.1), which takes a session type and an action as arguments and returns
another session type as a result. This function serves two purposes: (i) the function after(S , α)
is only defined for actions α that are (immediately) permitted by the protocol S , which allows
us to verify whether a term transition step violated a protocol or not; and (ii) since S describes
the current stage of the protocol to be followed, we need a way to evolve this protocol to the
next stage should α be a permitted action, and this is precisely S ′, the continuation session type
returned where after(S , α) = S ′.

Definition 5.1 (After Function). The after function is partial function defined for the following

19

cases:

after(S , τ) def
= S

after(S , f/n) def
= S

after(⊕
{
!li
(
T̃i
)
.S i
}
i∈I , ι!

{
l j, ṽ
}
) def
= S j where j ∈ I

after(&
{
?li
(
T̃i
)
.S i
}
i∈I , ?
{
l j, ṽ
}
) def
= S j where j ∈ I

This function is undefined for all other cases. The after function is overloaded to range over
session typing environments (∆) in order to compute a new session typing environment given
some action α and session type S :

after(∆, f/n, S) def
= ∆, f/n : S

after(∆, α, S) def
= ∆ if α , f/n

Intuitively, when the action produced by the transition is f/n, the session typing environment is
extended by the new mapping f/n : S . For all other actions, the session typing environment
remains unchanged. ■

Recall that module typechecking using rule [tModule] entails typechecking the bodies of all
the public functions w.r.t. their ascribed session type, ∆ ·

(
y : pid, x̃ : T̃

)
⊢

y
Σ S ▷ t : T ◁ S ′ (where

S ′ = end for this specific case). At runtime, a spawned client handler process in a session starts
running the function body term t where the parameter variables y, x̃ are instantiated with the pid
of the client, say ι, and the function parameter values, say ṽ, respectively, t [ι/y] [̃v/̃x], as modelled
in rule [rCall2] from Figure 8. The instantiated function body is thus closed and can be typed
w.r.t. an empty variable binding environment, Γ = ∅. Session fidelity thus states that if a closed
term t is well-typed, i.e.,

∆ · ∅ ⊢w S ▷ t : T ◁ S ′ (5)

(where S and S ′ are initial and residual session types, respectively, and T is the basic expression
type) and this term t transitions to a new term t′ with action α, i.e.,

t
α
−→ t′ (6)

the new term t′ is expected to remain well-typed, i.e.,

∆′ · ∅ ⊢w S ′′ ▷ t′ : T ◁ S ′ (7)

where the expanded ∆′ is computed as after(∆, α, S) = ∆′ and the base type of the term is pre-
served, as described by the constant type T in eqs. (5) and (7). To understand how the evolved
initial session type (S ′′) is computed or assumed (in eq. (7)), we have to consider the context
of our analysis. Our type-checker analyses one side of an interaction that does not interleave
with other sessions. We also assume that the interacting dual processes are well-behaved and
thus follow a compatible protocol (e.g. the dual session type) during execution. Despite these
restrictions, we obtain a certain degree of flexibility, where we can statically analyse processes
interacting with external processes which we may not have access to their source.

To this end, we make a distinction between the transition actions in Equation (6). If the
action α depends on the context process left implicit (i.e., α is an incoming message), we only

20

require the guarantee stated in Equation (7) whenever α is permitted by the protocol S i.e.,
S ′′ = after(S , α). More specifically, the condition S ′′ = after(S , α) is part of the antecedent of
the first clause in Session Fidelity Theorem and captures our conditional guarantees that apply
only when the context process is well-behaved. On the other hand, if the action α depends solely
on the process being typechecked (i.e., α is an outputted message or an internal action), then we
require that α is permitted by the protocol S . Concretely, the second clause of Session Fidelity
Theorem is stronger and the condition after(S , α) forms part of the succedent.

Theorem 2 (Session Fidelity). If ∆ · ∅ ⊢wΣ S ▷ t : T ◁ S ′ and t
α
−→
Σ

t′

— for α = ? {:l, ṽ} and some session type S ′′ = after(S , α), then there exists some ∆′, such that
∆′ · ∅ ⊢wΣ S ′′ ▷ t′ : T ◁ S ′ and after(∆, α, S) = ∆′

— for α ∈ { f/n, τ, ι! {:l, ṽ}}, then there exists some S ′′ and ∆′, such that ∆′ ·∅ ⊢wΣ S ′′▷ t′ : T ◁S ′

for after(S , α) = S ′′ and after(∆, α, S) = ∆′

Proof. By induction on the typing derivation ∆ · ∅ ⊢wΣ S ▷ t : T ◁S ′. Refer to Appendix B.2.

t1

S 1

t2

after(S 1, α1) = S 2

. . . v

after(S n, αn) = end

α1 α2 αn
\

Figure 10: Repeated applications of session fidelity

As shown in Figure 10, by repeatedly applying Theorem 2, we can therefore conclude that
all the (external) actions generated as a result of a typed computation (i.e., sequence of transition
steps) must all be actions that follow the protocol described by the initial session type. Since
public functions are always typed with a residual session type end, certain executions could
reach the case where the outstanding session is updated to end as well, i.e., after(S n, αn) = end.
In such a case, we are guaranteed that the term will not produce further side-effects, as in the
case of Figure 10 where the term is reduced all the way down to some value, v.

Example 5.1. We consider a concrete example to show the importance of session fidelity. The
function called client/1 sends a stop label and awaits a reply with the total value.

1 @dual "counter"

2 def client(server) do

3 x = send(server, {:stop})

4
5 receive do

6 {:value, num} -> num

7 end

8 end

Listing 4: Counter client obeying the protocol counter

21

This function adheres to the following protocol (from eq. (2)):

counter = ⊕
{

!incr . . . ,
!stop().?value(number).end

}
A process evaluating the function client executes by first sending a message containing a

stop label to the interacting processes’ pid (ιserver), as shown below.

x = send(ιserver, {:stop})

...

x = {:stop}

...

t t′
α = ιserver!

{
stop

}

As the process evaluates, the initial term t transitions to t′, where it sends a message as a side-
effect. This side-effect is denoted as an action α, where α = ιserver!

{
stop

}
. By the After Function

Definition, counter evolves to a new session type X:

X = after(counter, α) = ?value(number).end

For t′ to remain well-typed, it must now match with the evolved session type X, where it
has to be able to receive a message labelled value, before terminating. As a result, by the
session fidelity property, we know that each step of execution will be in line with the original
protocol. ■

We will also show that ElixirST observes a conditional form of the progress property, which
describes how well-typed terms transition within the aforementioned analysis context. However,
we consider the most problematic scenario first, where a process depends on external factors
to progress. When a process executes a term that is following the branching session type, the
process has to be able to handle (and pattern match) any valid incoming message. Concretely,
a term t following the session type &

{
. . .
}

has to be able to accept incoming messages, by
(successfully) pattern matching them to one of the branches. This holds due to the [tBranch]
rule (from Section 3.4) where we restrict all branching patterns to simple ones. In Proposition 3
we show that valid messages can always be matched to one of the branches.

Proposition 3. Any well-typed term (∆ · Γ ⊢wΣ S ▷ t : T ◁ S ′) following the branching session
type is able to process any valid incoming message, i.e.,

t = receive do
({
:li, p1

i , . . . , pn
i

}
→ ti
)

i∈I
end

S = &
{
?li
(
T 1

i , . . . , T n
i
)
.S i
}
i∈I

after(S , ?
{
lk, v1, . . . , vn

}
) = S k for some k ∈ I

 =⇒ match(p j
k, v

j)i∈1..n is defined

Proof. Note that ∆ · Γ ⊢wΣ S ▷ t : T ◁ S ′ and t = receive do
({
:li, p1

i , . . . , pn
i

}
→ ti
)

i∈I
end

imply simplepat(p j
i ,T

j
i)i∈I, j∈1..n. Refer to Appendix B.3.

By Proposition 3 we know that if a process depends on external factors (i.e., a term expects
an incoming message), then it should not have a problem to be able to handle these messages.

22

From this, we can infer that a well-typed receive construct is able to transition to a new term,
when a message is received. If we extend this to all terms, we can form the Progress Theorem,
where we establish that a process can always transition from one form to another. If no further
transitions are possible (see Figure 10), then the process must be itself a (final) value. In this
theorem we also establish that the action produced during the transition is always allowed by the
protocol; this is checked using the after function.

Theorem 4 (Progress). If ∆ · ∅ ⊢wΣ S ▷ t : T ◁S ′, then either t is a value, or else there exists some

term t′ and action α such that t
α
−→
Σ

t′ and after(S , α) is defined

Proof. By induction on the typing derivation ∆ · ∅ ⊢wΣ S ▷ t : T ◁S ′. Refer to Appendix B.3.

6. Implementation

This section describes how the type system of Section 3 is implemented as the session type
checker tool called ElixirST. This tool is integrated in Elixir with minimal changes to the syntax
of the surface language. The source code is written in Elixir and is available open-source.

6.1. Elixir Compilation with Session Types

Elixir Source Code +
Session Type Annotations Elixir AST

Macros Expanded

ErlangCore ErlangBEAM Code

ElixirST

Figure 11: Stages of Elixir compilation along with the session type implementation (in red)

The Elixir source code is compiled in several steps (see Figure 11). The original Elixir
source code is initially parsed into an Abstract Syntax Tree (AST). Then, Elixir’s powerful macro
system expands all non-special form2 into special form macros (e.g., if/unless statements are
converted into case constructs) [17]. Afterwords, the expanded Elixir AST is converted into
Erlang abstract format and Core Erlang. Finally, it is compiled into BEAM code which can be
executed on the Erlang Virtual Machine (BEAM).

Our implementation integrates seamlessly within this compilation pipeline (see Figure 11,
red). Inside the Elixir source code, processes are described with a specific session type using
annotations (starting with @). Annotations are able to hold information about a module during
compile-time. We provide normal labelled session types (@session) and their dual (@dual,
referenced by a label):

@session "X = !ping().?pong().X"

...

@dual "X" # Equivalent to X’ = ?ping().!pong().X’

2Special form macros cannot be expanded further, forming the basic building blocks of the Elixir language.
23

The annotations set up the rules of the session types, which need to be enforced later on in the
compilation process. Elixir provides several compile-time hooks which provide a way to alter or
append to the compilation pipeline. In this implementation, we initially use the on definition

hook to parse the session type (from the annotations) and compute the dual type where required;
this is done using the Erlang modules leex3 and yecc4, which create a lexer and a parser,
respectively, based on the session type syntax rules shown in Figure 3. Then, the after compile

hook is used to run ElixirST right after the BEAM code is produced. Since the BEAM code stores
directly the expanded Elixir AST, ElixirST is able to traverse this AST and verify its concurrent
parts using session types.

6.2. Bridging between Elixir and Our Model

Every construct in Figure 3 maps directly to a corresponding construct in the actual Elixir
language. The @spec annotation which decorates functions with types is already present in the
latest distribution of the language. It is typically used for code documentation and to statically
analyse programs using the Dialyzer [11], a tool that detects potential (type) errors in Core
Erlang programs using success typing [9]. We use the @spec information to specify the types
for the parameters and the return type of the functions, supplementing our session typechecking
analysis. A similar approach to ours was adopted by Cassola et al. [13] for a gradual static type
system for Elixir.

receive do

{:A} -> send(p, {:C})

:ok

{:B} -> send(p, {:C})

:ok

end

.

receive do

{:A} ->

:ok

{:B} ->

:ok

end .

send(p, {:C})

The typing rules of Section 3 are also designed in a way to minimally alter common coding
patterns in the language. For instance, branches in session types might have common contin-
uations, such as !C().end in the type &

{
?A().!C().end, ?B().!C().end

}
. Many type systems force

programs to structure their code as shown in the left-hand side code snippet above (which per-
forms the same send action twice). However, in Elixir it is common to express this as a fork-join
pattern, with a single continuation performing the common action once as shown in the right-
hand side code snippet. Our type system can typecheck both code snippets.

The only aspect left to discuss is the mechanism used by our implementation to guarantee an
interaction between the two processes implementing the respective endpoints of binary session
type. To achieve this end, we implemented a bespoke spawning function (refer to Section 3.6)
that takes the code of the respective endpoints and returns a tuple with the pids of the two pro-
cesses that are already linked. The implementation of our session initiation is given below:

1 def session(serverFn, server_args, clientFn, client_args)

2 when is_function(serverFn) and is_function(clientFn) do

3 server_pid = spawn(fn ->

4 receive do

5 {:pid, client_pid} ->

3https://erlang.org/doc/man/leex.html
4https://erlang.org/doc/man/yecc.html

24

https://erlang.org/doc/man/leex.html
https://erlang.org/doc/man/yecc.html

6 apply(serverFn, [client_pid | server_args])

7 end

8 end)

9
10 client_pid = spawn(fn ->

11 send(server_pid, {:pid, self()})

12 apply(clientFn, [server_pid | client_args])

13 end)

14
15 {server_pid, client_pid}

16 end

This modified session/4 function takes two pairs of arguments: two references of function
names (that should be spawned) and their list of arguments. The code implements the initial-
isation protocol depicted in Figure 7. It first spawns one process (pre-server in Figure 7 for
line 3) and passes its pid to the second spawned process (pre-client in Figure 7, as the variable
server pid on lines 11 and 12). Then, the pre-client process sends its pid to the pre-server pro-
cess (line 11 and lines 4 and 5). At this point, both processes execute their respective functions
to transform into the actual first and second processes participating in the session, passing the
respective pids as the first argument of the executing functions (lines 6 and 12).

The current implementation of the session/4 function can only launch two processes at a
time, in line with the binary sessions. This can however, be extended to handle more than two
processes in the case of hierarchical processes, where a process may interact in several separate
binary sessions, similar to the notion of intuitionistic session types [18].

Our implementation still allows spawned processes to receive messages from any other pro-
cess. Unfortunately, unsolicited messages can interfere with a session-typed process, since the
receiver is not able to distinguish where the message is originating from in the present implemen-
tation. An improvement would be exploiting Elixir’s ability to cherry-pick messages out-of-order
from the queue using pattern matching. As soon as a session is launched, a unique session ID
would be shared with the two parties, and each message exchanged between them would use this
ID to identify the source (and destination). This would enable selective reads to filter unsolicited
messages. Mostrous and Vasconcelos [19] created a similar system to distinguish messages by
attaching a unique reference to each message.

6.3. Case Study
We use ElixirST to verify an Elixir (CLI) application which interacts with a third-party service

(i.e., Duffel [20]). Duffel offers a real-time flight selling service, where flights can be fetched and
booked via a REST application programming interface (API).

Client Gateway Duffel
Flight Server

Elixir ecosystem – FlightSystem

HTTP messages

S client

Third-Party

Figure 12: Interactions with Duffel API

Our application is built as an Elixir module, called FlightSystem, which interacts with the
Duffel Flight Server, as shown in Figure 12. The module consists of a client which can request

25

to book flights from the Duffel Server. This server can only accept HTTP messages (e.g., GET
or POST requests), so we use a gateway which acts as a middleman between the client and the
third-party server.

From the Duffel API documentation,5 we can get a list of API calls that can be made, along
with their details. Thus, we can infer an order (i.e., a protocol) of calls that need to be in-
voked in the correct order, to achieve what we want. For instance, we consider a client that
searches and books a flight. Concretely, the client has to interact with several endnodes, includ-
ing \offer requests, \offers and \orders, in a correct order. This order of interaction is
formalised in the S client protocol which is then used by ElixirST to ensure that a client process
follows it, thus interacting safely (via a gateway process which converts the requests to HTTP
messages) with the Duffel server.

S client = ⊕

!request

(
origin: binary, destination: binary,

dep date: binary, class: atom, pass no: number
)
.S offers,

!cancel()

S offers = rec Y .&

?offer

(
offer no: number, total amount: number,

currency: binary, duration: number,
stops: number, segments: binary

)
.S details,

?error(binary).S client

S details = ⊕

!more details().&

?details(. . .). ⊕

!make booking(. . .).

&{?ok(. . .), ?error(binary)},
!cancel()

 ,
?error(binary)

,
!reject().Y

For clarity, S client is split in two: S offers and S details. Furthermore, we add labels to each
payload type to make it more apparent what data needs to be transferred – labels are also allowed
in ElixirST, given that labels are only used for decorative purposes. We take a brief look at
how the client can book a flight. The interaction starts with the client making request to get the
available flights (S client). By glancing on S client, one can get more information on what the client
needs to include the request details, such as the origin and destination locations. Note that, we
use the binary type, which is the type for strings in Elixir. Then, the client starts receiving (and
rejecting) one offer at a time, until the client decides to take up an offer (S offers).

To learn more about the flight offer, the client sends a request to get more details (e.g., op-
erating airline and updated price), and awaits the results (S details). Once the details are received,
the client can decide to either cancel the order, or book the flight. In case of the latter, the
booking will be finalised after the client receives back a confirmation code. Throughout this in-
teraction, the server may reply with an error message, which the client also needs to handle (i.e.,
?error(binary)).

1 defmodule FlightSystem do

2 use ElixirST

3
4 @session "S_client = +{!request(origin: binary, destination: binary...}"

5https://duffel.com/docs/api/overview/welcome

26

https://duffel.com/docs/api/overview/welcome

5 @spec client(g_pid, binary, binary, binary, atom, number) :: :ok

6 def client(g_pid, origin, destination, dep_date, class, pas_no) do

7 send(g_pid, {:request, origin, destination, dep_date, class, pas_no})

8 IO.puts("Sending request for a flight from #{origin} to...")

9 IO.puts("Waiting for a response from the server...")

10
11 consume_offer(g_pid)

12 end

13
14 @spec consume_offer(pid) :: atom

15 defp consume_offer(g_pid) do

16 receive do

17 {:offer, offer_no, total_amount, currency, dur, stops, segments} ->

18 IO.puts("Offer ##{offer_no}: \n#{currency}#{total_amount}...")

19 accept? = IO.gets("Accept offer ##{offer_no}? y/n: ")

20
21 case accept? do

22 "y\n" -> send(g_pid, {:more_details})

23 IO.puts("Requesting updated details for offer...")

24 ...

25 _ -> send(g_pid, {:reject})

26 consume_offer(g_pid)

27 end

28
29 {:error, message} -> send(pid, {:cancel})

30 end

31 end

32 end

Listing 5: Session-typed snippet of a flight system written in Elixir

This behaviour formalised by S client is applied in the module FlightSystem, which is
shown partly in Listing 5. FlightSystem contains a public function client, a private function
consume offer, and an omitted public function gateway. The client function is annotated
with the session type S client, thus ElixirST ascertains that the client follows the expected behaviour
(line 4). The client function sends a message containing :request and then it calls the private
function consume offer. This latter function follows the remaining actions in the session type,
i.e., S offers. The dual part of the interaction, the gateway function, should follow a compatible
protocol, such as the dual session type, S client. This is not enforced, since the gateway function
goes beyond the syntax defined in Section 3.3 (e.g., uses other modules to parse JSON responses,
or uses dynamic types) which are not defined by our type system in Section 3.4. This function
may also be inaccessible for static analysis (e.g. proprietary source code), so we assume that at
runtime it obeys S client. Nevertheless, we can intiate a session executing both public functions
using our session function, as follows:

ElixirST.session(&FlightSystem.client/6,

["MLA", "CDG", "2023-11-24", :economy, 2],

&FlightSystem.gateway/1,

[])

ElixirST ensures that the function client/6 follows the pattern described by S client which mir-
rors the implicit order of API requests by Duffel. For instance, if a client tries to make a booking
before making a request containing the flight details (i.e., skipping line 7), then the order will fail;
this will be flagged by our type system earlier on instead of being rejected by Duffel at runtime.

27

This case study shows that ElixirST is flexible and practical enough to be integrated in real-
world applications. In addition to verifying statically the individual functions, by explicitly
adding information about the interactions, we provide a source of documentation within the
source code itself.

In this case study we analysed the client side of the interaction, leaving the gateway process
unverified, thus susceptible to behavioural issues. To fix this, we can use existing techniques,
such as synthesising runtime monitors [21, 22, 23] for the unverified parts, similar to the work
by Bartolo Burlò et al. [24].

7. Related Work

In this section, we compare ElixirST with other type systems and implementations.

7.1. Type Systems for Elixir

Cassola et al. [13, 25] presented a gradual type system for Elixir. It statically typechecks
the functional part of Elixir modules, using a gradual approach, where some terms may be left
with an unknown expression type. In contrast to ElixirST, Cassola et al. analyse directly the
unexpanded Elixir code which results in more explicit typechecking rules. Also, they focus on
the static type system without formulating the operational semantics.

Another static type-checker for Elixir is Gradient [26]. It is a wrapper for its Erlang coun-
terpart tool and takes a similar approach to [13], where gradual types are used. Another project,
TypeCheck [27], adds dynamic type validations to Elixir programs. TypeCheck performs run-
time typechecking by wrapping checks around existing functions. Gradient and TypeCheck are
provided as an implementation only, without any formal analysis. In contrast to ElixirST, the
discussed type-checkers [13, 26, 27] analyse the sequential part of the Elixir language omitting
any checks related to message-passing between processes.

Some implementations aim to check issues related to message-passing. Harrison [28] stati-
cally checks Core Erlang for such issues. For instance, it detects orphan messages (i.e., messages
that will never be received) and unreachable receive branches. In separate work, Christakis and
Sagonas [29] analyse Core Erlang code to construct a communication graph which depicts the
message flow between different process. This is then used to detect errors of similar kind, e.g.
receive constructs that never receive any messages. This work was implemented as part of
the Dialyzer. Harrison [30] extends [28] to analyse Erlang/OTP behaviours (e.g., gen server,
which structures processes in a hierarchical manner) by injecting runtime checks in the code.
Compared to our work, [28, 30, 29] perform automatic analysis of the implementation, where
they analyse send and receive primitives against each other. They analyse messages on a fine-
grained level, which contrast with our work that uses a general protocol (e.g., session types)
describing the full interaction within a session.

Another type system for Erlang was presented by Svensson et al. [31]. Their body of work
covers a larger subset of Erlang to what would be its equivalent in Elixir covered by our work.
Moreover, its multi-tiered semantics captures an LTS defined over systems of concurrent actors.
Although we opted for a smaller subset, we go beyond the pattern matching described by Svens-
son et al. since we perform a degree of typechecking for base types (e.g. in the premise of
[tBranch]).

28

7.2. Session Type Systems

Closest to our work is [19], where Mostrous and Vasconcelos introduced session types to
a fragment of Core Erlang, a dynamically typed language linked to Elixir. Their type system
tags each message exchanged with a unique reference. This allows multiple sessions to coex-
ist, since different messages could be matched to the corresponding session, using correlation
sets. Mostrous and Vasconcelos take a more theoretical approach, so there is no implementation
for [19]. Their type system guarantees session fidelity by inspecting the processes’ mailboxes
where, at termination, no messages should be left unprocessed in their mailboxes. Our work
takes a more restrictive but pragmatic approach, where we introduce session types for functions
within a module. We offer additional features, including variable binding (e.g., in let statements),
expressions (e.g., addition operation), inductive types (e.g., tuples and lists), infinite computation
via recursion and explicit protocol definition.

A session-based runtime monitoring tool for Python was initially presented by Neykova and
Yoshida [32]. They use the Scribble [33] language to write multiparty session type (MPST) [16]
protocols, which are then used to monitor the processes’ actions. Different processes are ascribed
a role (defined in the MPST protocol) using function decorators (e.g. @role), which is similar to
how we annotate functions with protocols (e.g. using @session). Similar to [32], Fowler [34]
presented an MPST implementation for Erlang. This implementation uses Erlang/OTP be-
haviours (e.g., gen server), which take into account Erlang’s let it crash philosophy, where
processes may fail while executing. Neykova and Yoshida [35] extend process monitoring in
Erlang to provide a recovery strategy for the failed processes, ensuring that all of the failed (or
affected) processes are restarted safely. All of these Erlang tools accept a more flexible language
than the one allowed by our work. This is done at an added runtime cost, since they flag issues at
runtime, whereas our work provides static guarantees that flags issues at pre-deployment stages.
Moreover, our work is able to statically analyse part of the code (and give static guarantees for
it) without requiring access to the entire codebase.

Scalas and Yoshida [36] applied binary session types to the Scala language, where session
types are abstracted as Scala classes. Session fidelity is ensured using Scala’s compiler, which
complains if an implementation does not follow its ascribed protocol. Bartolo Burlò et al. [24]
extended the aforementioned work, to monitor one side of an interaction statically and the other
side dynamically using runtime monitors. These works relegate linearity checks to runtime. In
contrast, ElixirST statically ensures that annotated implementations fully exhaust their associated
protocol once. Another implementation was done by Scalas et al. [37, 38], where session types
were added in Scala 3. This design utilises dependent function types and model checking to
verify programs at compile-time.

Harvey et al. [39] presented a new actor-based language, called EnsembleS, which offers
session types as a native feature of the language. EnsembleS statically verifies implementations
with respect to session types, while still allowing for adaptation of new actors at runtime, given
that the actors obey a known protocol. Thus, actors can be terminated and discovered at runtime,
while still maintaining static correctness.

There have been several binary [40, 41] and multiparty [42, 43] session type implementations
for Rust. These implementations exploit Rust’s affine type system to guarantee that channels
mirror the actions prescribed by a session type. Padovani [44] created a binary session type
library for OCaml to provide static communication guarantees. This project was extended [45]
to include dynamic contract monitoring which flags violations at runtime. The approaches used
in the Rust and OCaml implementations rely heavily on type-level features of the language,

29

which do not readily translate to the dynamically typed Elixir language. When we compare our
work to the aforementioned work, we notice several limitations. ElixirST only supports a limited
form of spawning (discussed in Section 6.2), where we constrain the number of processes in a
single session to two processes. This contrasts to the unbounded number of parallel processes
that are allowed in the π-calculus, where session types were first introduced [46]. Another aspect
that we have not discussed is the lack of session delegation. ElixirST does not allow processes to
hand over the remaining session to other processes. This stems from the approach that we use;
our tool typechecks actors directly, whereas the aforementioned works [40, 41, 42, 43, 44, 45]
typecheck channel endpoints that can easily be transferred between different processes.

Actor-like techniques are also used in Active Objects (AO) based languages to combine the
concept of process separation, with asynchronous method calls in object-oriented languages.
Session types are utilised to structure method calls in such languages. For instance, Kambur-
jan et al. [47, 48] added session types to ABS, which is an AO language that uses futures to
resolve the results derived from method invocations. Kamburjan et al. use global protocols
(stemming from MPSTs) to define the order of method invocation that originate from object in-
stances. Although these global protocols are used for dynamic checking, they are also used to
check each method statically on a more localised scale, using local types. ABS uses (abstracted)
Erlang processes to structure their concurrent backend, similar to the backend structure used in
our work.

Actor systems are notoriously hard to analyse statically. The main reason for this is that
actors are open to receive any kind of messages, which makes it difficult to predict or analyse
their behaviour. Our work takes a lenient view of this, where we simply ignore malformed mes-
sages using Elixir’s selective receive construct. On the other hand, well-formed but unsolicited
messages can cause behavioural issues. Other works handle this by typing the actors’ mailboxes
directly rather than their behaviour. De’Liguoro and Padovani [49] introduced a mailbox calcu-
lus which considers mailboxes as first-class citizens. This calculus adds types to mailboxes, thus
ensuring that processes are free from behavioural issues, such as deadlocks. Fowler et al. [50]
built on this to implement mailbox types within a practical concurrent programming language.
These works [47, 48, 50] are presented with an implementation for purpose-built bespoke lan-
guages. The aims of our work are different since we start with an industry strength language
and try to retrofit session type mechanisms so as to support the existing design patterns of the
language.

8. Conclusion

In this work we established a correspondence between the ElixirST type system [7] and the
runtime behaviour of a client handler running an Elixir module function that has been type-
checked w.r.t. its session type protocol. In particular, we showed that this session-based type
system observes the standard session fidelity property, meaning that processes executing a typed
function always follow their ascribed protocols at runtime. This property provides the neces-
sary underlying guarantees to attain various forms of communication safety, whereby should two
processes following mutually compatible protocols (e.g. S and its dual S), they avoid certain
communication errors (e.g., a send statement without a corresponding receive construct).

Future work. There are a number of avenues we intend to pursue. One line of investigation is
the augmentation of protocols that talk about multiple entry points to a module perhaps from
the point of view of a client that is engaged in multiple sessions at one time, possibly involving

30

multiple modules. The obvious starting points to look at here are the well-established notions of
multiparty session types [16, 38] or the body of work on intuitionistic session types organising
processes hierarchically [51, 18]. Another natural extension to our work would be to augment
our session type protocol in such a way to account for process failure and supervisors, which
is a core part of the Elixir programming model. For this, we will look at previous work on
process/session type extensions that account for failure [52, 53, 39, 54, 55, 56, 57]. We also
plan to augment our session typed protocols to account for resource usage and cost, along the
lines of [58, 59]. It should also be relatively straightforward to integrate the elaborate expression
typechecking mechanisms developed by Castagna et al. [60] to replace our (limited) expression
typing in Figure 5. This would considerably enhance the expressivity of our framework to handle
a wider range of Elixir programs.

References
[1] D. Thomas, Programming Elixir: Functional, Concurrent, Pragmatic, Fun, Pragmatic Bookshelf, 2018.
[2] C. Hewitt, P. B. Bishop, R. Steiger, A universal modular ACTOR formalism for artificial intelligence, in: N. J.

Nilsson (Ed.), Proceedings of the 3rd International Joint Conference on Artificial Intelligence. Standford, CA,
USA, August 20-23, 1973, William Kaufmann, 1973, pp. 235–245.

[3] G. A. Agha, ACTORS - a model of concurrent computation in distributed systems, MIT Press series in artificial
intelligence, MIT Press, 1990.

[4] J. L. Andersen, etorrent, GitHub repository, 2013. URL: https://github.com/jlouis/etorrent.
[5] ninenines, Cowboy, GitHub repository, 2022. URL: https://github.com/ninenines/cowboy.
[6] D. C. Schmidt, S. Vinoski, Object interconnections comparing alternative programming techniques for multi-

threaded CORBa servers (column 7), 1996.
[7] G. Tabone, A. Francalanza, Session Types in Elixir, in: E. Castegren, J. D. Koster, S. Fowler (Eds.), Proceedings

of the 11th ACM SIGPLAN International Workshop on Programming Based on Actors, Agents, and Decentralized
Control, AGERE 2021, Virtual Event / Chicago, IL, USA, 17 October 2021, ACM, 2021, pp. 12–23. doi:10.1145/
3486601.3486708.

[8] G. Tabone, A. Francalanza, Session Fidelity for ElixirST: A Session-Based Type System for Elixir Modules, in:
C. Aubert, C. Di Giusto, L. Safina, A. Scalas (Eds.), Proceedings 15th Interaction and Concurrency Experience,
ICE 2022, Lucca, Italy, 17 June 2022, volume 365 of EPTCS, 2022, pp. 17–36. doi:10.4204/EPTCS.365.2.

[9] S. Nyström, A soft-typing system for erlang, in: B. Däcker, T. Arts (Eds.), Proceedings of the 2003 ACM SIGPLAN
Workshop on Erlang, Uppsala, Sweden, August 29, 2003, ACM, 2003, pp. 56–71. doi:10.1145/940880.940888.

[10] B. C. Pierce, Types and Programming Languages, MIT Press, 2002.
[11] T. Lindahl, K. Sagonas, Practical type inference based on success typings, in: A. Bossi, M. J. Maher (Eds.),

Proceedings of the 8th International ACM SIGPLAN Conference on Principles and Practice of Declarative Pro-
gramming, July 10-12, 2006, Venice, Italy, ACM, 2006, pp. 167–178. doi:10.1145/1140335.1140356.

[12] R. Atkey, Parameterised notions of computation, J. Funct. Program. 19 (2009) 335–376. doi:10.1017/
S095679680900728X.

[13] M. Cassola, A. Talagorria, A. Pardo, M. Viera, A gradual type system for Elixir, Journal of Computer Languages
68 (2022) 101077. doi:10.1016/j.cola.2021.101077.

[14] R. M. Keller, Formal verification of parallel programs, Commun. ACM 19 (1976) 371–384. doi:10.1145/
360248.360251.

[15] L. Caires, F. Pfenning, Session types as intuitionistic linear propositions, in: CONCUR 2010 - Concurrency Theory,
21th International Conference, CONCUR 2010, Paris, France, August 31-September 3, 2010. Proceedings, 2010,
pp. 222–236. doi:10.1007/978-3-642-15375-4_16.

[16] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types, J. ACM 63 (2016) 9:1–9:67. doi:10.
1145/2827695.

[17] C. MacCord, Metaprogramming Elixir - Write Less Code, Get More Done (and Have Fun!, The Pragmatic Pro-
grammers, O’Reilly, 2015. URL: http://www.oreilly.de/catalog/9781680500417/index.html.

[18] K. Pruiksma, F. Pfenning, Back to futures, Journal of Functional Programming 32 (2022) e6. doi:10.1017/
S0956796822000016.

[19] D. Mostrous, V. T. Vasconcelos, Session typing for a featherweight erlang, in: W. D. Meuter, G. Roman (Eds.),
Coordination Models and Languages - 13th International Conference, COORDINATION 2011, Reykjavik, Iceland,
June 6-9, 2011. Proceedings, volume 6721 of Lecture Notes in Computer Science, Springer, 2011, pp. 95–109.
doi:10.1007/978-3-642-21464-6_7.

31

https://github.com/jlouis/etorrent
https://github.com/ninenines/cowboy
http://dx.doi.org/10.1145/3486601.3486708
http://dx.doi.org/10.1145/3486601.3486708
http://dx.doi.org/10.4204/EPTCS.365.2
http://dx.doi.org/10.1145/940880.940888
http://dx.doi.org/10.1145/1140335.1140356
http://dx.doi.org/10.1017/S095679680900728X
http://dx.doi.org/10.1017/S095679680900728X
http://dx.doi.org/10.1016/j.cola.2021.101077
http://dx.doi.org/10.1145/360248.360251
http://dx.doi.org/10.1145/360248.360251
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1145/2827695
http://dx.doi.org/10.1145/2827695
http://www.oreilly.de/catalog/9781680500417/index.html
http://dx.doi.org/10.1017/S0956796822000016
http://dx.doi.org/10.1017/S0956796822000016
http://dx.doi.org/10.1007/978-3-642-21464-6_7

[20] Duffel Technology Ltd, Duffel, 2023. URL: https://duffel.com/.
[21] A. Francalanza, A. Seychell, Synthesising correct concurrent runtime monitors, Formal Methods Syst. Des. 46

(2015) 226–261. doi:10.1007/s10703-014-0217-9.
[22] A. Francalanza, A Theory of Monitors, Inf. Comput. 281 (2021) 104704. doi:10.1016/j.ic.2021.104704.
[23] L. Aceto, I. Cassar, A. Francalanza, A. Ingólfsdóttir, Bidirectional runtime enforcement of first-order branching-

time properties, Log. Methods Comput. Sci. 19 (2023). doi:10.46298/lmcs-19(1:14)2023.
[24] C. Bartolo Burlò, A. Francalanza, A. Scalas, On the monitorability of session types, in theory and practice, in:

A. Møller, M. Sridharan (Eds.), 35th European Conference on Object-Oriented Programming, ECOOP 2021, July
11-17, 2021, Aarhus, Denmark (Virtual Conference), volume 194 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021, pp. 20:1–20:30. doi:10.4230/LIPIcs.ECOOP.2021.20.

[25] M. Cassola, A. Talagorria, A. Pardo, M. Viera, A gradual type system for elixir, Proceedings of the 24th Brazil-
ian Symposium on Context-Oriented Programming and Advanced Modularity (2020). doi:10.1145/3427081.
3427084.

[26] Erlang Solutions, Gradient, GitHub repository, 2022. URL: https://github.com/esl/gradient.
[27] W.-M. Wijnja, Typecheck: Fast and flexible runtime type-checking for your elixir projects, GitHub repository,

2022. URL: https://github.com/Qqwy/elixir-type_check.
[28] J. Harrison, Automatic detection of core erlang message passing errors, in: N. Chechina, A. Francalanza (Eds.),

Proceedings of the 17th ACM SIGPLAN International Workshop on Erlang, ICFP 2018, St. Louis, MO, USA,
September 23-29, 2018, ACM, 2018, pp. 37–48. doi:10.1145/3239332.3242765.

[29] M. Christakis, K. Sagonas, Detection of asynchronous message passing errors using static analysis, in: R. Rocha,
J. Launchbury (Eds.), Practical Aspects of Declarative Languages - 13th International Symposium, PADL 2011,
Austin, TX, USA, January 24-25, 2011. Proceedings, volume 6539 of Lecture Notes in Computer Science, Springer,
2011, pp. 5–18. doi:10.1007/978-3-642-18378-2_3.

[30] J. Harrison, Runtime type safety for Erlang/OTP behaviours, in: A. Francalanza, V. Fördós (Eds.), Proceedings
of the 18th ACM SIGPLAN International Workshop on Erlang, Erlang@ICFP 2019, Berlin, Germany, August 18,
2019, ACM, 2019, pp. 36–47. doi:10.1145/3331542.3342571.

[31] H. Svensson, L. Fredlund, C. B. Earle, A unified semantics for future erlang, in: S. L. Fritchie, K. Sagonas (Eds.),
Proceedings of the 9th ACM SIGPLAN workshop on Erlang, Baltimore, Maryland, USA, September 30, 2010,
ACM, 2010, pp. 23–32. doi:10.1145/1863509.1863514.

[32] R. Neykova, N. Yoshida, Multiparty session actors, Log. Methods Comput. Sci. 13 (2017). doi:10.23638/
LMCS-13(1:17)2017.

[33] K. Honda, A. Mukhamedov, G. Brown, T. Chen, N. Yoshida, Scribbling Interactions with a Formal Foundation,
in: R. Natarajan, A. K. Ojo (Eds.), Distributed Computing and Internet Technology - 7th International Confer-
ence, ICDCIT 2011, Bhubaneshwar, India, February 9-12, 2011. Proceedings, volume 6536 of Lecture Notes in
Computer Science, Springer, 2011, pp. 55–75. doi:10.1007/978-3-642-19056-8_4.

[34] S. Fowler, An Erlang implementation of multiparty session actors, in: M. Bartoletti, L. Henrio, S. Knight, H. T.
Vieira (Eds.), Proceedings 9th Interaction and Concurrency Experience, ICE 2016, Heraklion, Greece, 8-9 June
2016, volume 223 of EPTCS, 2016, pp. 36–50. doi:10.4204/EPTCS.223.3.

[35] R. Neykova, N. Yoshida, Let it recover: Multiparty protocol-induced recovery, in: Proceedings of the 26th
International Conference on Compiler Construction, CC 2017, Association for Computing Machinery, New York,
NY, USA, 2017, p. 98–108. doi:10.1145/3033019.3033031.

[36] A. Scalas, N. Yoshida, Lightweight session programming in scala, in: S. Krishnamurthi, B. S. Lerner (Eds.), 30th
European Conference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56
of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016, pp. 21:1–21:28. doi:10.4230/LIPIcs.
ECOOP.2016.21.

[37] A. Scalas, N. Yoshida, E. Benussi, Effpi: verified message-passing programs in Dotty, in: J. I. Brachthäuser,
S. Ryu, N. Nystrom (Eds.), Proceedings of the Tenth ACM SIGPLAN Symposium on Scala, Scala@ECOOP 2019,
London, UK, July 17, 2019, ACM, 2019, pp. 27–31. doi:10.1145/3337932.3338812.

[38] A. Scalas, N. Yoshida, E. Benussi, Verifying message-passing programs with dependent behavioural types, in:
K. S. McKinley, K. Fisher (Eds.), Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, ACM, 2019, pp. 502–516. doi:10.
1145/3314221.3322484.

[39] P. Harvey, S. Fowler, O. Dardha, S. J. Gay, Multiparty session types for safe runtime adaptation in an actor language,
in: A. Møller, M. Sridharan (Eds.), 35th European Conference on Object-Oriented Programming, ECOOP 2021,
July 11-17, 2021, Aarhus, Denmark (Virtual Conference), volume 194 of LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021, pp. 10:1–10:30. doi:10.4230/LIPIcs.ECOOP.2021.10.

[40] T. B. L. Jespersen, P. Munksgaard, K. F. Larsen, Session types for rust, in: P. Bahr, S. Erdweg (Eds.), Proceedings
of the 11th ACM SIGPLAN Workshop on Generic Programming, WGP@ICFP 2015, Vancouver, BC, Canada,
August 30, 2015, ACM, 2015, pp. 13–22. doi:10.1145/2808098.2808100.

32

https://duffel.com/
http://dx.doi.org/10.1007/s10703-014-0217-9
http://dx.doi.org/10.1016/j.ic.2021.104704
http://dx.doi.org/10.46298/lmcs-19(1:14)2023
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2021.20
http://dx.doi.org/10.1145/3427081.3427084
http://dx.doi.org/10.1145/3427081.3427084
https://github.com/esl/gradient
https://github.com/Qqwy/elixir-type_check
http://dx.doi.org/10.1145/3239332.3242765
http://dx.doi.org/10.1007/978-3-642-18378-2_3
http://dx.doi.org/10.1145/3331542.3342571
http://dx.doi.org/10.1145/1863509.1863514
http://dx.doi.org/10.23638/LMCS-13(1:17)2017
http://dx.doi.org/10.23638/LMCS-13(1:17)2017
http://dx.doi.org/10.1007/978-3-642-19056-8_4
http://dx.doi.org/10.4204/EPTCS.223.3
http://dx.doi.org/10.1145/3033019.3033031
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.21
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.21
http://dx.doi.org/10.1145/3337932.3338812
http://dx.doi.org/10.1145/3314221.3322484
http://dx.doi.org/10.1145/3314221.3322484
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2021.10
http://dx.doi.org/10.1145/2808098.2808100

[41] W. Kokke, Rusty variation: Deadlock-free sessions with failure in rust, in: M. Bartoletti, L. Henrio, A. Mavridou,
A. Scalas (Eds.), Proceedings 12th Interaction and Concurrency Experience, ICE 2019, Copenhagen, Denmark,
20-21 June 2019, volume 304 of EPTCS, 2019, pp. 48–60. doi:10.4204/EPTCS.304.4.

[42] N. Lagaillardie, R. Neykova, N. Yoshida, Implementing multiparty session types in rust, in: S. Bliudze, L. Boc-
chi (Eds.), Coordination Models and Languages - 22nd IFIP WG 6.1 International Conference, COORDINATION
2020, Held as Part of the 15th International Federated Conference on Distributed Computing Techniques, Dis-
CoTec 2020, Valletta, Malta, June 15-19, 2020, Proceedings, volume 12134 of Lecture Notes in Computer Science,
Springer, 2020, pp. 127–136. doi:10.1007/978-3-030-50029-0_8.

[43] Z. Cutner, N. Yoshida, Safe session-based asynchronous coordination in rust, in: F. Damiani, O. Dardha (Eds.),
Coordination Models and Languages - 23rd IFIP WG 6.1 International Conference, COORDINATION 2021, Held
as Part of the 16th International Federated Conference on Distributed Computing Techniques, DisCoTec 2021,
Valletta, Malta, June 14-18, 2021, Proceedings, volume 12717 of Lecture Notes in Computer Science, Springer,
2021, pp. 80–89. doi:10.1007/978-3-030-78142-2_5.

[44] L. Padovani, A simple library implementation of binary sessions, J. Funct. Program. 27 (2017) e4. doi:10.1017/
S0956796816000289.

[45] H. C. Melgratti, L. Padovani, Chaperone contracts for higher-order sessions, Proc. ACM Program. Lang. 1 (2017)
35:1–35:29. doi:10.1145/3110279.

[46] K. Honda, V. T. Vasconcelos, M. Kubo, Language primitives and type discipline for structured communication-
based programming, in: Programming Languages and Systems: 7th European Symposium on Programming,
ESOP’98 Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS’98 Lisbon,
Portugal, March 28–April 4, 1998 Proceedings 7, Springer, 1998, pp. 122–138. doi:10.1007/BFb0053567.

[47] E. Kamburjan, C. C. Din, T. Chen, Session-based compositional analysis for actor-based languages using futures,
in: K. Ogata, M. Lawford, S. Liu (Eds.), Formal Methods and Software Engineering - 18th International Conference
on Formal Engineering Methods, ICFEM 2016, Tokyo, Japan, November 14-18, 2016, Proceedings, volume 10009
of Lecture Notes in Computer Science, 2016, pp. 296–312. doi:10.1007/978-3-319-47846-3_19.

[48] R. Hähnle, A. W. Haubner, E. Kamburjan, Locally static, globally dynamic session types for active objects, in: F. S.
de Boer, J. Mauro (Eds.), Recent Developments in the Design and Implementation of Programming Languages,
Gabbrielli’s Festschrift, November 27, 2020, Bologna, Italy, volume 86 of OASIcs, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020, pp. 1:1–1:24. doi:10.4230/OASIcs.Gabbrielli.1.

[49] U. de’Liguoro, L. Padovani, Mailbox types for unordered interactions, in: T. D. Millstein (Ed.), 32nd European
Conference on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018, Amsterdam, The Netherlands,
volume 109 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, pp. 15:1–15:28. doi:10.4230/
LIPIcs.ECOOP.2018.15.

[50] S. Fowler, D. P. Attard, F. Sowul, S. J. Gay, P. Trinder, Special delivery: Programming with mailbox types, Proc.
ACM Program. Lang. (2023).

[51] S. Balzer, F. Pfenning, Manifest sharing with session types, Proc. ACM Program. Lang. 1 (2017) 37:1–37:29.
doi:10.1145/3110281.

[52] A. Francalanza, M. Hennessy, A Theory for Observational Fault Tolerance, J. Log. Algebraic Methods Program.
73 (2007) 22–50.

[53] A. Francalanza, M. Hennessy, A Theory of System Behaviour in the Presence of Node and Link Failure, Inf.
Comput. 206 (2008) 711–759.

[54] L. Bocchi, J. Lange, S. Thompson, A. L. Voinea, A model of actors and grey failures, in: COORDINATION,
volume 13271 of Lecture Notes in Computer Science, Springer, 2022, pp. 140–158.

[55] K. Peters, U. Nestmann, C. Wagner, Fault-tolerant multiparty session types, in: FORTE, volume 13273 of Lecture
Notes in Computer Science, Springer, 2022, pp. 93–113.

[56] A. D. Barwell, A. Scalas, N. Yoshida, F. Zhou, Generalised multiparty session types with crash-stop failures, in:
CONCUR, volume 243 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 35:1–35:25.

[57] M. A. L. Brun, O. Dardha, Magπ: Types for failure-prone communication, in: ESOP, volume 13990 of Lecture
Notes in Computer Science, Springer, 2023, pp. 363–391.

[58] A. Das, J. Hoffmann, F. Pfenning, Work analysis with resource-aware session types, in: A. Dawar, E. Grädel (Eds.),
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK,
July 09-12, 2018, ACM, 2018, pp. 305–314. doi:10.1145/3209108.3209146.

[59] A. Francalanza, E. de Vries, M. Hennessy, Compositional reasoning for explicit resource management in channel-
based concurrency, Log. Methods Comput. Sci. 10 (2014). doi:10.2168/LMCS-10(2:15)2014.

[60] G. Castagna, G. Duboc, J. Valim, The design principles of the elixir type system, CoRR abs/2306.06391 (2023).

33

http://dx.doi.org/10.4204/EPTCS.304.4
http://dx.doi.org/10.1007/978-3-030-50029-0_8
http://dx.doi.org/10.1007/978-3-030-78142-2_5
http://dx.doi.org/10.1017/S0956796816000289
http://dx.doi.org/10.1017/S0956796816000289
http://dx.doi.org/10.1145/3110279
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/978-3-319-47846-3_19
http://dx.doi.org/10.4230/OASIcs.Gabbrielli.1
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.15
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.15
http://dx.doi.org/10.1145/3110281
http://dx.doi.org/10.1145/3209108.3209146
http://dx.doi.org/10.2168/LMCS-10(2:15)2014

A. Additional Definitions

In this appendix, we formalise some auxiliary definitions that are used in Sections 3–5 and
Appendix B.

Definition A.1 (Free Variables). The set of free variables is defined inductively as:

fv(e) def
=

{x} e = x
∅ e = b
fv(e1) ∪ fv(e2) e = e1 ⋄ e2 or e = [e1 | e2]
fv(e′) e = not e′

∪i∈1..nfv(ei) e = {e1, . . . , en}

fv(t) def
=

fv(t1) ∪ (fv(t2) \ {x}) t = (x = t1; t2)
∪i∈1..nfv(ei) ∪ fv(w) t = send (w, {:l, e1, . . . , en})
∪i∈I[fv(ti) \ vars(p̃i)] t = receive do ({:li, p̃i} → ti)i∈Iend

∪i∈2..nfv(ei) ∪ fv(w) t = f (w, e2, . . . , en)
∪i∈I[fv(ti) \ vars(pi)] ∪ fv(e) t = case e do (pi → ti)i∈Iend ■

Definition A.2 (Bound Variables).

bv(t) def
=

∅ t = e or t = send (w, {:l, ẽ}) or t = f (̃e)
{x} ∪ bv(t1) ∪ bv(t2) t = (x = t1; t2)
∪i∈I[bv(ti) ∪ vars(p̃i)] t = receive do ({:li, p̃i} → ti)i∈Iend

∪i∈I[bv(ti) ∪ vars(pi)] t = case e do (pi → ti)i∈Iend ■

Definition A.3 (Variable Substitution).

e [v/x] def
=

v e = x
y e = y, y , x
b e = b
e1 [v/x] ⋄ e2 [v/x] e = e1 ⋄ e2

not (e′ [v/x]) e = not e′

[e1 [v/x] | e2 [v/x]] e = [e1 | e2]
{e1 [v/x] , . . . , en [v/x]} e = {e1, . . . , en}

t [v/x] def
=

send (w [v/x] , {: l, e1 [v/x] , . . . , en [v/x]}) t = send (w, {: l, e1, . . . , en})
receive do ({li, p̃i} → ti [v/x])i∈Iend t = receive do ({li, p̃i} → ti)i∈Iend

f (e1 [v/x] , . . . , en [v/x]) t = f (e1, . . . , en)
case e [v/x] do (pi → ti [v/x])i∈Iend t = case e do (pi → ti)i∈Iend

y = t1 [v/x] ; t2 [v/x] t = (y = t1; t2), x , y, y , v ■

34

Definition A.4 (Type). This partial function defines the types of basic values.

type(boolean) def
= boolean type(number) def

= number

type(atom) def
= atom type(ι) def

= pid, where ι is a pid instance ■

Definition A.5 (Variable Patterns). Computes an ordered set of variables from a given pattern p.

vars(p̃) def
= vars(p1, . . . , pn) def

= vars(p1) ∪ · · · ∪ vars(pn)

vars(p) def
=

∅ p = b
{x} p = x
vars(w1) ∪ vars(w2) p = [w1 | w2]
∪i∈1..nvars(wi) p = {w1, . . . , wn} ■

Definition A.6 (Function Details). We can extract function details (i.e., params, body,
param types, return type, dual) from a list of functions (Q̃) and build a mapping, using
set-comprehension, as follows. The list of functions (Q̃) may consist of public (D) and private
(P) functions.

details(Q̃) def
=

 f/n :

dual = y, params = x̃,

param types = T̃ ,

return type = T, body = t

∣∣∣∣∣∣∣∣∣∣∣

[@session “S ”]

@spec f
(
pid, T̃

)
:: T

def[p] f (y, x̃) do t end

 ∈ Q̃

■

Definition A.7 (Functions Names and Arity). This definition takes the set of all public function
(D̃) as input, and returns a set of all public function names and their arity.

functions(D̃) def
=

 f/n

∣∣∣∣∣∣
@session . . . ; @spec . . .

def f (y, x2, . . . , xn) do t end

 ∈ D̃

■

Definition A.8 (All Session Types). The function sessions(D̃), returns the session type corre-
sponding to each annotated public function.

sessions(D̃) def
=

 f/n : S

∣∣∣∣∣∣
@session “S ”; @spec . . .

def f (y, x2, . . . , xn) do t end

 ∈ D̃

In case the @dual annotation is used instead of @session, the dual session type is computed
automatically. ■

B. Proofs

In this appendix, we present the complete proofs of Proposition 1, Theorems 2 and 4, which
were omitted from the main text.

35

B.1. Proofs for Proposition 1

Before proving Proposition 1, we must analyse some properties related to closed terms, where
we see how they affect variable substitutions (Definition A.3). Lemma 5 states that if a variable
x does not exist inside a term t, then, if we initiate x with some value, term t must remain
unaffected, i.e., t [v/x] = t. Restricting this statement, Corollary 6 states that, if x is not a free
variable in t, then the same result should hold. Lemma 7 consists of two statements that compare
the free variables in terms (or expressions) with those that include a substitution.

Lemma 5. x < fv(t) ∪ bv(t) implies t [v/x] = t

Proof. By induction on the structure of t.

Corollary 6. x < fv(t) implies t [v/x] = t

Proof. A consequence of Lemma 5.

Lemma 7.

i. x ∈ fv(t) implies fv(t [v/x]) = fv(t) \ {x}

ii. x ∈ fv(e) implies fv(e [v/x]) = fv(e) \ {x}

Proof. By induction on the structures of t and e for Items i and ii respectively.

Lemma 8. match(p, v) = [v1 , . . . , vn/x1 , . . . , xn], implies vars(p) = {x1, . . . , xn}

Proof. By induction on the structure of p.

[p = b] The function match(b, v) succeeds only when v = b. So, by the match definition, when
v = b,

match(b, b) = [] (B.1a)

By the vars definition, vars(b) = ∅, which matches the result from eq. (B.1a) since no
variables where substituted.

[p = x] By the match definition, for any v,

match(x, v) = [v/x] (B.1b)

By the vars definition, vars(x) = {x}, which matches the variable in the substitution of
eq. (B.1b).

[p = [w1 | w2]] By the match definition, for v = [v1 | v2],

match(p, v) = match(w1, v1),match(w2, v2) = [ṽ1/x̃1] [ṽ2/x̃2] where (B.1c)
match(w1, v1) = [ṽ1/x̃1] (B.1d)
match(w2, v2) = [ṽ2/x̃2] (B.1e)

36

By case analysis of w1 and w2 from eqs. (B.1d) and (B.1e), we conclude that

vars(w1) = {x̃1} (B.1f)
vars(w2) = {x̃2} (B.1g)

We need to show that vars([w1 | w2]) = {x̃1, x̃2}. By the vars definition and eqs. (B.1f)
and (B.1g), vars([w1 | w2]) = vars(x̃1) ∪ vars(x̃2) = {x̃1} ∪ {x̃2}. This result matches the
variables in the substitutions of eq. (B.1c).

[p = {w1, . . . , wn}] Similar to the previous case.

Lemma 9 (Closed Expression). fv(e) = ∅ and e→ e′ implies fv(e′) = ∅

Proof. By induction on the structure of e.

Lemmata 5–9 allow us to prove Closed Term Proposition (Proposition 1). By this proposition,
we can say that a closed term t remains closed, even after t transitions to some new term t′,
producing an action α. Lemma 9 is analogous; it states that expressions remain closed after
reductions.

Proposition 1 (Closed Term). If fv(t) = ∅ and t
α
−→ t′, then fv(t′) = ∅

Proof. By induction on the structure of t.

[t = e] Holds immediately by the rule [rExpression] and the Closed Expression Lemma.

[t = (x = t1; t2)] Given that current structure of t, we can derive t
α
−→ t′ using two cases:

1. [rLet1] From the rule, t′ = (x = t′1; t2) and

t1
α
−→ t′1 (B.2a)

From the premise, fv(t) = ∅, so by the fv definition, fv(t1) ∪ (fv(t2) \ {x}) = ∅, or
equivalently

fv(t1) = ∅ (B.2b)
fv(t2) \ {x} = ∅ (B.2c)

If we apply the inductive hypothesis to eqs. (B.2a) and (B.2b), we get

fv(t′1) = ∅ (B.2d)

So, by eqs. (B.2c) and (B.2d) and the definition of fv, we get fv(x = t′1; t2) = ∅ as
required.

2. [rLet2] From the rule, t = (x = v; t2) and t′ = t2 [v/x]. Since fv(t) = ∅, by the Free
Variables Definition, fv(v) ∪ (fv(t2) \ {x}) = ∅, or equivalently

fv(v) = ∅ (B.2e)
fv(t2) \ {x} = ∅ (B.2f)

We need to show that fv(t′) = ∅, or fv(t2 [v/x]) = ∅, so we consider two sub-cases:
37

a. If x < fv(t2), then by Corollary 6, t2 = t2 [v/x]. Substituting this in eq. (B.2f), results
in fv(t2 [v/x]) = ∅, as required.

b. If x ∈ fv(t2), then by Lemma 7, we get fv(t2 [v/x]) = fv(t2) \ {x}. If we substitute this
in eq. (B.2f), the case holds.

[t = send (w, {:l, e1, . . . , en})] Given that current structure of t, we can derive t
α
−→ t′ using

two cases:

1. [rChoice1] From this rule, we know that α = τ and

t′ = send
(
ι,
{
:l, v1, . . . , vk−1, e′k, . . . , en

})
ek → e′k (B.3a)

Since fv(t) = ∅, then by the fv definition

fv(ι) = ∅ (B.3b)
fv(vi) = ∅ for i ∈ 1..k − 1 (B.3c)

fv(ei) = ∅ for i ∈ k..n (B.3d)

Applying the Closed Expression Lemma to eqs. (B.3a) and (B.3d), results in fv(ek) = ∅.
Using this information along with eqs. (B.3b–d) and the fv definition, results in fv(t′) =
∅ as required.

2. [rChoice2] In this case t = {:l, v1, . . . , vn} and t′ = {:lµ, v1, . . . , vn}. Since from the
premise fv(t) = ∅, then using the fv definition,

fv(ι) = ∅, fv(vi) = ∅ for i ∈ 1..n (B.3e)

To show that fv({:lµ, v1, . . . , vn}) = ∅, we can apply eq. (B.3e) to the fv definition.

[t = receive do
(
{:li, p̃i} → ti

)
i∈Iend] From the premise, we know that fv(t) = ∅, so by the

fv definition,
fv(ti) \ vars(p̃i) = ∅ for all i ∈ I (B.4a)

Given that current structure of t, we can deduce t
α
−→ t′ using [rBranch], where α =

?
{
:l j, v1, . . . , vn

}
for some j ∈ I, and

match(p̃ j, ṽ) = σ where σ = [v′1 , . . . , v′k/x1 , . . . , xk] (B.4b)
t′ = t jσ

From eq. (B.4b), we can apply Lemma 8 to get

vars(p̃ j) = {x1, . . . , xk} (B.4c)

Substituting eq. (B.4c) in eq. (B.4a) (for i = j), we get fv(t j) \ {x1, . . . , xk} = ∅. Our
aim is to get t jσ = ∅, so we check if x ∈ fv(t j). If this is valid, then by Lemma 7, we can
conclude that fv(t j [v′1/x1]) \ {x2, . . . , xk} = ∅. In case when x < fv(t j), the same can be
concluded by Corollary 6. Applying the same procedure for a total of k times, results in
fv(t j [v′1 , . . . , v′k/x1 , . . . , xk]) = ∅, as required.

38

[t = f (w, e2, , . . . , en)] Given the current structure of t, we can derive t
α
−→ t′ using two cases:

1. [rCall1] From this rule, we know that α = τ, t = f (v1, . . . , vk−1, ek, . . . , en),
t′ = f

(
v1, . . . , vk−1, e′k, . . . , en

)
and

ek → e′k (B.5a)

Since fv(t) = ∅, then by the fv definition,

fv(vi) = ∅ for all i ∈ 1..k − 1 (B.5b)
fv(ei) = ∅ for all i ∈ k..n (B.5c)

Applying the Closed Expression Lemma to eqs. (B.5a) and (B.5c) (for i = k), we get

fv(ek) = ∅ (B.5d)

So, using the fv definition with eqs. (B.5b–d), result fv(t′) = ∅ holds as expected.
2. [rCall2] From the rule, we know that α = f/n and

t = f (ι, v2, . . . , vn) (B.5e)
t′ = t̄ [ι/y] [v2 , . . . , vn/x2 , . . . , xn]

Σ (f/n) = Ω Ω.body = t Ω.params = x2, . . . , xn Ω.dual = y (B.5f)

Since term reduction can only happen with respect to a well-formed function informa-
tion environment Σ, we can assume that the only free variables in a function body are
the parameter types, or formally, for all f/n ∈ dom(Σ), we have

fv
(
Σ(f/n).body

)
\
(
Σ(f/n).params ∪ {Σ(f/n).dual}

)
= ∅

Thus, using this information and substituting the information from eq. (B.5f), we get

fv(t̄) \ {y, x2, . . . , xn} = ∅ (B.5g)

To obtain the expected result (i.e., fv(t′) = ∅), we check if y ∈ fv(t̄). If this is true,
then by Lemma 7, we can conclude that fv(t̄ [ι/y]) \ {x2, . . . , xn} = ∅. In case when
x < fv(t̄), the same can be concluded by Corollary 6. Applying the same procedure for
the remaining free variables (i.e., x2, . . . , xn), we get fv(t j [v′1 , . . . , v′k/x1 , . . . , xk]) = ∅, as
expected.

[t = case e do (pi → ti)i∈Iend] Given that current structure of t, which implicitely contains
the catch-all pattern, we can derive t

α
−→ t′ using two cases:

1. [rCase1] From the rule we know that t′ = case e′ do (pi → ti)i∈Iend, and from the
premise we know that

e→ e′ (B.6a)

Since fv(t) = ∅, by the fv definition, we know that

fv(ti) \ vars(pi) = ∅ for all i ∈ I (B.6b)
fv(e) = ∅ (B.6c)

Applying Closed Expression Lemma to eqs. (B.6a) and (B.6c), results in fv(e′) = ∅.
Thus, using this information, along with eq. (B.6b) and the fv definition, we get fv(t′) =
∅ as needed.

39

2. [rCase2] From the rule, we know that t = case v′ do (pi → ti)i∈Iend, e = v′ and for
some j ∈ I,

match(p j, v′) = σ where σ = [v1 , . . . , vn/x1 , . . . , xn] (B.6d)
t′ = t jσ (B.6e)

From the premise, we know that fv(t) = ∅, so by the fv definition, fv(v′) = ∅ and

fv(ti) \ vars(p̃i) = ∅ for all i ∈ I (B.6f)

From eq. (B.6d), we can apply Lemma 8, to get

vars(p j) = {x1, . . . , xk} (B.6g)

Substituting eq. (B.6g) in eq. (B.6f) (for i = j), we get fv(t j) \ {x1, . . . , xk} = ∅. By
similar reasoning from previous cases, we get fv(t′) = ∅, as required.

B.2. Proofs for Theorem 2

Before proving Theorem 2, we consider some other necessary lemmata. The ∆-Weakening
Lemma weakens (i.e., extends) the session typing environment (∆) without affecting the overall
typing result.

Lemma 10 (∆-Weakening). If ∆ · Γ ⊢w S ▷ t : T ◁ S ′, then (∆, ∆′) · Γ ⊢w S ▷ t : T ◁ S ′

Proof. Follows by induction on the derivation of ∆ · Γ ⊢w S ▷ t : T ◁ S ′. We analyse the
significant cases:

[tUnknownCall] From the rule, we know that

(∆, f/n : S) · Γ′ ⊢y S ▷ t̄ : T ◁ S ′ (B.7a)
Γ ⊢exp ei : Ti for all i ∈ 2..n (B.7b)

Applying the inductive hypothesis to eq. (B.7a) results in (∆, ∆′, f/n : S) · Γ′ ⊢y S ▷ t :
T ◁ S ′, where we assume that f/n < dom(∆′). So, using the latter result, eq. (B.7b) and
[tUnknownCall] results in (∆, ∆′) · Γ ⊢w S ▷ t : T ◁ S ′, as required.

[tKnownCall] From the rule, we know that

∆ (f/n) = S (B.8a)
Γ ⊢exp ei : Ti for all i ∈ 2..n (B.8b)

If we extend ∆ by ∆′, then (∆, ∆′)(f/n) = S remains valid. So, using this information, along
with eq. (B.8b) in [tKnownCall], we get (∆, ∆′) · Γ ⊢w S ▷ t : T ◁ end, as required.

Cases [tChoice] and [tExpression] hold immediately since ∆ is unused. The remaining cases
hold effortlessly by the inductive hypothesis.

40

The type system observes the session fidelity property if well-typed terms remain well-typed
after transitioning. As terms transition, in particular in the rules [rLet2], [rCall2] and [rBranch],
variables are substituted with values. The Substitution Lemma (Lemma 11) ensures that when
free variables inside of terms and expressions are substituted with a closed value, the resulting
terms and expressions remain well-typed. As a result, the substituted variables become redundant
in variable binding environment (Γ), and thus can be removed from Γ. This lemma consists of
two statements, where substitution is performed in (i) terms, and (ii) expressions.

Lemma 11 (Substitution).

i. If Γ ⊢exp v : T ′ and ∆ · (Γ, x : T ′) ⊢w S ▷ t : T ◁ S ′, then ∆ · Γ ⊢w[v/x] S ▷ t [v/x] : T ◁ S ′

ii. If Γ ⊢exp v : T ′ and Γ, x : T ′ ⊢exp e : T, then Γ ⊢exp e [v/x] : T

Proof. By induction on the derivation of ∆ · (Γ, x : T ′) ⊢w S ▷ t : T ◁ S ′ for Item i, and by
induction on the derivation of Γ, x : T ′ ⊢exp e : T for Item ii. We show the main cases for Item i:

[tLet] From the rule, we know that t = (x′ = t1; t2), and

x′ , w (B.9a)
Γ ⊢exp v : T ′ (B.9b)

∆ · (Γ, x : T ′) ⊢w S ▷ t1 : T ′′ ◁ S ′′ (B.9c)
∆ · (Γ, x : T ′, x′ : T ′′) ⊢w S ′′ ▷ t2 : T ◁ S ′ (B.9d)

The variable binding environment of eq. (B.9d) can be reordered to

∆ · (Γ, x′ : T ′′, x : T ′) ⊢w S ′′ ▷ t2 : T ◁ S ′ (B.9e)

We need to show that ∆ · Γ ⊢w[v/x] S ▷ (x′ = t1; t2) [v/x] : T ◁ S ′, which by the Variable
Substitution Definition, is equivalent to

∆ · Γ ⊢w[v/x] S ▷ x′ = t1 [v/x] ; t2 [v/x] : T ◁ S ′ (B.9f)

for x , x′ and x′ , v. To obtain eq. (B.9f), we need some preliminary results. Applying
the inductive hypothesis to eqs. (B.9b) and (B.9c), and similarly to eqs. (B.9b) and (B.9e),
results in

∆ · Γ ⊢w[v/x] S ▷ t1 [v/x] : T ′′ ◁ S ′′ (B.9g)
∆ · (Γ, x′ : T ′′) ⊢w[v/x] S ′′ ▷ t2 [v/x] : T ◁ S ′ (B.9h)

From eq. (B.9a) and the Variable Substitution Definition we know that x , w [v/x]. Apply-
ing this information, along with eqs. (B.9g) and (B.9h) to the premise of [tLet] results in
eq. (B.9f), as required.

[tBranch] From the rule, [tBranch], we know that for some n ∈ N and

Γ ⊢exp v : T ′ (B.10a)

S = &
{
?li
(
T 1

i , . . . , T n
i
)
.S i
}
i∈I

t = receive do
({
:li, p1

i , . . . , pn
i

}
→ ti
)

i∈I
end (B.10b)

41

From the premise, we also know that, for all i ∈ I and j ∈ 1..n:

simplepat(p j
i ,T

j
i) (B.10c)

⊢wpat p j
i : T j

i ▷ Γ j
i (B.10d)

∆ ·
(
Γ, x : T ′, Γ1

i , . . . , Γ
n
i
)
⊢w S i ▷ ti : T ◁ S ′ (B.10e)

This case holds if the following statement is obtained:

∆ · Γ ⊢w[v/x] S ▷ t [v/x] : T ◁ S ′ (B.10f)

where t [v/x] = receive do
({
:li, p1

i , . . . , pn
i

}
→
)

i∈I
end. To obtain eq. (B.10f) we need

to use the [tBranch] rule which requires multiple premises. Applying the inductive hy-
pothesis to eqs. (B.10a) and (B.10e) results in

∆ ·
(
Γ, Γ1

i , . . . , Γ
n
i
)
⊢w[v/x] S i ▷ ti [v/x] : T ◁ S ′ for all i ∈ I (B.10g)

If w , x, then eq. (B.10d)

⊢
w[v/x]
pat p j

i : T j
i ▷ Γ j

i for all j ∈ 1..n (B.10h)

since by the Variable Substitution Definition, w = w [v/x]. Therefore, eqs. (B.10c), (B.10g)
and (B.10h) can be applied to the premise of [tBranch] to obtain eq. (B.10f):

∆ · Γ ⊢w[v/x] S ▷ t [v/x] : T ◁ S ′

which is the required result. In case when w = x, then an additional mapping may be
obtained from the pattern type rule which maps the dual pid to some type. However, since
in this case x would be substituted to a variable, then the extra mapping does not affect the
result, obtaining eq. (B.10f) as required.

[tChoice] From the rule, we know that for some µ ∈ I, T = {atom,T 1
µ , . . . , T n

µ }, S =
⊕
{
!lµ
(
T̃µ
)
.S µ
}
i∈I and

t = send
(
ι,
{
:lµ, e1, . . . , en

})
(B.11a)

Γ, x : T ′ ⊢exp e j : T j
µ for all j ∈ 1..n (B.11b)

Γ ⊢exp v : T ′ (B.11c)

Applying eqs. (B.11b) and (B.11c) to Item ii of Lemma 11 results in Γ ⊢exp e j [v/x] : T j
µ for

all j ∈ 1..n. Applying this result to [tChoice] results in

∆ · Γ ⊢w[v/x] S ▷ t [v/x] : T ◁ S ′

which is the required result, since t [v/x] = send
(
w [v/x],

{
:lµ, e1 [v/x] , . . . , en [v/x]

})
.

Lemma 12 links expression types to the basic values (and vice versa), e.g. the value 5 has
type number.

42

Lemma 12 (Value Typing).
i. Γ ⊢exp v : boolean iff v = boolean

ii. Γ ⊢exp v : number iff v = number

iii. Γ ⊢exp v : atom iff v = atom

iv. Γ ⊢exp v : pid iff v = ι

v. Γ ⊢exp v : [T] iff v = [v1 | v2] or v = []

vi. Γ ⊢exp v : {T̃ } iff v =
{
ṽ′
}

Proof. By case analysis on the expression typing rules.

Lemma 13 provides a guarantee that the variables inside the substitutions produced by the
match function have the expected types. It also ensures that the variables from the same sub-
stitutions, which are stored in Γ, are assigned with the same types. Consequently, Corollary 14
provides the same guarantees but for a sequence of patterns and values.

Lemma 13. For all patterns p and values v,

match(p, v) = [v1 , . . . , vn/x1 , . . . , xn]
⊢wpat p : T ▷ Γ

∅ ⊢exp v : T

 =⇒
 Γ = x1 : T1, . . . , xn : Tn

∅ ⊢exp vi : Ti for i ∈ 1..n

Proof. By induction on the definition match(p, v). We proceed by case analysis:

[p = b,v = b] By the definition, match(b, b) = [], so no substitutions are expected. By ⊢wpat b :
T ▷ Γ and [tpBasic], the variable binding environment (i.e., Γ) must be empty, so case
holds immediately.

[p = x] By definition, match(x, v) = [v/x], and from the premise we know that

∅ ⊢exp v : T. (B.12a)

From ⊢wpat x : T ▷ Γ and [tpVariable], we know that Γ must contain x : T only. Therefore,
case holds by eq. (B.12a).

[p = [w1 | w2] ,v = [v1 | v2]]
Using the match definition, match([w1 | w2] , [v1 | v2]) =
match(w1, v1),match(w2, v2), or equivalently

match(w1, v1) = [v′1 , . . . , v′j/x1 , . . . , x j] (B.13a)
match(w2, v2) = [v′k , . . . , v′n/xk , . . . , xn] where k = j + 1 (B.13b)

From the premise, applying [tList] to ∅ ⊢exp [v1 | v2] : [T] , results in

∅ ⊢exp v1 : T and ∅ ⊢exp v2 : [T] (B.13c)

Applying also [tpList] to ⊢wpat [w1 | w2] : [T] ▷ Γ, results in

⊢wpat w1 : T ▷ Γ′ and ⊢wpat w2 : [T] ▷ Γ′′ (B.13d)

Applying the inductive hypothesis twice to eqs. (B.13a–d) results in

Γ′ = x1 : T1, . . . , x j : T j and Γ′′ = xk : Tk, . . . , xn : Tn (B.13e)
∅ ⊢exp v′i : Ti for all i ∈ 1..n (B.13f)

Therefore, case holds by eqs. (B.13e) and (B.13f), since Γ = Γ′, Γ′′.
43

[p = {w1, . . . , wm} ,v = {v1, . . . , vm}]
Using the match definition, match({w1, . . . , wm} , {v1, . . . , vm}) =
match(w1, v1), . . . , match(wm, vm) = σ , or equivalently, for i ∈ 1..m,

match(wi, vi) = σi given that σ = σ1, . . . , σm (B.14a)

From ∅ ⊢exp {v1, . . . , v2} : {T1, . . . , Tm}, by [tTuple], we know that

∅ ⊢exp vi : Ti (B.14b)

Applying also [tpTuple] to ⊢wpat {w1, . . . , wm} : {T1, . . . , Tm} ▷ Γ1, . . . , Γm, results in

⊢wpat wi : Ti ▷ Γi (B.14c)

Applying the inductive hypothesis m times to eqs. (B.14a–c) results in

Γ = Γ1, . . . , Γm = x1 : T1, . . . , xn : Tn

∅ ⊢exp v j : T j for all j ∈ 1..n

as required.

Corollary 14. For all patterns p̃ = p1, . . . , pn, values ṽ = v1, . . . , vn and ∀ j ∈ 1..n, then the
following implication holds.

match(p̃, ṽ) = [v′1 , . . . , v′k/x1 , . . . , xk]

⊢
y
pat p j : T j ▷ Γ j

∅ ⊢exp v j : T j

 =⇒
 Γ̃ = Γ1, . . . , Γ j = x1 : T1, . . . , xk : Tk

∅ ⊢exp v′i : Ti for i ∈ 1..k

Proof. Take j = 1, where we know that match(p1, v1) = σ1, ⊢ypat p1 : T 1 ▷ Γ1 and ∅ ⊢exp v1 : T 1.
Then, applying this information to Lemma 13, we get

Γ1 = x1
1 : T 1

1 , . . . , x1
m : T 1

m (B.15a)

∅ ⊢exp v1
i : T 1

i for i ∈ 1..m (B.15b)

Generalising for j ∈ 1..n, then Γ̃ = Γ1, . . . , Γn holds by generalising eq. (B.15a). Also,
∅ ⊢exp v′i : Ti for i ∈ 1..k holds by eq. (B.15b). Thus, Corollary 14 holds by applying Lemma 13
n times.

Lemma 15 shows that the type of expressions remains unchanged (or preserved) after an
expression is reduced. This means that expressions have a constant type in all steps of reductions,
until the expression cannot be reduced further.

Lemma 15 (Preservation (Expressions)). If ∅ ⊢exp e : T and e→ e′, then ∅ ⊢exp e′ : T

Proof. Follows by induction on ∅ ⊢exp e : T . We consider the main cases:
44

[tTuple] From the rule, we know that e = {e1, . . . , ek, . . . , en}, T = {T1, . . . , Tn} and

∅ ⊢exp ei : Ti for all i ∈ 1..n (B.16a)

Deriving e→ e′ using [reTuple] results in e′ =
{
v1, . . . , vk−1, e′k, . . . , en

}
and

ek → e′k (B.16b)

Applying eqs. (B.16a) and (B.16b) to the inductive hypothesis results in ∅ ⊢exp e′k : Tk. By
the latter, eq. (B.16a) and [tTuple], we get ∅ ⊢exp e′ : T , as required.

[tArithmetic] From the rule we know that e = e1 ⋄ e2, T = number and

∅ ⊢exp e1 : number (B.17a)
∅ ⊢exp e2 : number (B.17b)

e→ e′ can be derived using different rules, so we consider three sub-cases:

1. [reOperation1] From this rule we know that e′ = e′1 ⋄ e2 and

e1 → e′1 (B.17c)

Applying eqs. (B.17a) and (B.17c) to the inductive hypothesis results in ∅ ⊢exp e′1 :
number. Using this information, along with eq. (B.17b) in [tArithmetic], results in
∅ ⊢exp e′ : number, as required.

2. [reOperation2] Analogous to [reOperation1].

3. [reOperation3] From the rule, we know that e = v1 ⋄ v2 and e′ has some value
v = v1 ⋄ v2. Since we know that ∅ ⊢exp e : T , or ∅ ⊢exp v1 ⋄ v2 : T , then ∅ ⊢exp e′ : T
follows immediately given that e′ = v = v1 ⋄ v2.

Regarding the remaining cases: Cases [tBasic], [tVariable] and [tEList] hold trivially,
since e → e′ does not apply. Cases [tComparison] and [tBoolean] are analogous to
[tArithmetic]. Cases [tList] and [tNot] take a similar approach to [tTuple].

Lemmata 10–15 allow us to prove the Session Fidelity Theorem. This is one of the main
results of Section 5.

Theorem 2 (Session Fidelity). If ∆ · ∅ ⊢wΣ S ▷ t : T ◁ S ′ and t
α
−→
Σ

t′

— for α = ? {:l, ṽ} and some session type S ′′ = after(S , α), then there exists some ∆′, such that
∆′ · ∅ ⊢wΣ S ′′ ▷ t′ : T ◁ S ′ and after(∆, α, S) = ∆′

— for α ∈ { f/n, τ, ι! {:l, ṽ}}, then there exists some S ′′ and ∆′, such that ∆′ ·∅ ⊢wΣ S ′′▷ t′ : T ◁S ′

for after(S , α) = S ′′ and after(∆, α, S) = ∆′

Proof. By induction on the typing derivation ∆ · ∅ ⊢wΣ S ▷ t : T ◁ S ′.

45

[tLet] From the rule, we know that x , w, and

t = (x = t1; t2) (B.18a)
∆ · ∅ ⊢w S ▷ t1 : T ′ ◁ S ′′′ (B.18b)

∆ ·
(
x : T ′

)
⊢w S ′′′ ▷ t2 : T ◁ S ′ (B.18c)

From the structure of t (eq. (B.18a)), term transitions (t
α
−→ t′) can be derived using two

rules, so we consider two sub-cases:

1. [rLet1] From this rule, we know that t′ = (x = t′1; t2) and

t1
α
−→ t′1 (B.18d)

If α = ? {:l, ṽ}, then by α, eqs. (B.18b) and (B.18d) and the inductive hypothesis we
obtain

∆′ · ∅ ⊢w S ′′ ▷ t′1 : T ′ ◁ S ′′′ (B.18e)

where after(∆, α, S) = ∆′. In case that α , ? {:l, ṽ}, eq. (B.18e) can be obtained as
well, however we also require after(S , α) = S ′′, which holds immediately. Also, by the
After Function Definition, we know that ∆′ is an extension of ∆, so we can apply the
∆-Weakening Lemma on eq. (B.18c) to get

∆′ ·
(
x : T ′

)
⊢w S ′′′ ▷ t2 : T ◁ S ′ (B.18f)

Using eqs. (B.18e) and (B.18f) as the premise for rule [tLet], we obtain:

∆′ · ∅ ⊢w S ′′ ▷ t′1 : T ′ ◁ S ′′′ ∆′ · (x : T ′) ⊢w S ′′′ ▷ t2 : T ◁ S ′ x , w
[tLet]

∆′ · ∅ ⊢w S ′′ ▷ x = t′1; t2 : T ◁ S ′

where ∆′ · ∅ ⊢w S ′′ ▷ t′ : T ◁ S ′ is the expected result.

2. [rLet2] From the rule, we know that t = (x = v; t2), t′ = t2 [v/x] and α = τ, therefore
after(S , α) = S = S ′′′. Since t1 = v, by eq. (B.18b) and [tExpression], then ∅ ⊢exp v :
T ′ holds. If we apply this latter information and eq. (B.18c) to the Substitution Lemma,
we obtain ∆ · ∅ ⊢w[v/x] S ′′′ ▷ t2 [v/x] : T ◁ S ′. This is the expected result, since by the
Variable Substitution Definition, w [v/x] = w; and by the after definition, ∆′ = ∆.

[tBranch] From the rule, we know that for some n ∈ N then

S = &
{
?li
(
T 1

i , . . . , T n
i
)
.S i
}
i∈I (B.19a)

t = receive do
({
:li, p1

i , . . . , pn
i

}
→ ti
)

i∈I
end (B.19b)

S µ = after(&
{
?li
(
T̃i
)
.S i
}
i∈I , α) (B.19c)

Since α has to be an incoming message, we focus solely on te first case of the Session
Fidelity Theorem. From the premise, we also know that some properties regarding each
individual branch from the receive construct:

∀i ∈ I ·

 ⊢wpat p j
i : T j

i ▷ Γ j
i for all j ∈ 1..n (B.19d)

∆ ·
(
Γ1

i , . . . , Γ
n
i
)
⊢w S i ▷ ti : T ◁ S ′ (B.19e)

46

From the structure of t (eq. (B.19b)), term reduction (t
α
−→ t′) can only be derived using

[rBranch], where execution progresses to a single branch (i.e., tµ), rather than all branches.
The right branch is chosen by matching its label, li∈I , to the label received in the incoming
message, lµ. Thus, for some k ∈ N, there exists some µ ∈ I where lµ = li, and

α = ?
{
:lµ, v1, . . . , vn

}
(B.19f)

match((p1
µ, . . . , pn

µ), (v1, . . . , vn)) = [v′1 , . . . , v′k/x1 , . . . , xk] (B.19g)
t′ = tµ [v′1 , . . . , v′k/x1 , . . . , xk]

From eq. (B.19f), α refers to the message received from the dual process, which is assumed
(from the premise of the theorem) to be valid by the after function (eq. (B.19c)). We can
compare the contents of this message to the original session type S (eq. (B.19a)), to obtain
information regarding the types of the individual values inside α. We know that α contains
a label lµ and n values. Thus for j ∈ 1..n, each value v j, has a corresponding type T j

µ from
the session type S , where S contains ?lµ

(
T 1
µ , . . . , T

n
µ

)
.S µ. Formally, this can be written

as
∅ ⊢exp v j : T j

µ for all j ∈ 1..n (B.19h)

Applying eqs. (B.19d), (B.19g) and (B.19h) into Corollary 14, results in Γ̃µ =
Γ1
µ, . . . , Γ

n
µ = x1 : T1, . . . , xk : Tk and

∅ ⊢exp v′m : Tm for m ∈ 1..k (B.19i)

Applying eq. (B.19i) and ∆ · Γ̃µ ⊢w S µ▷ tµ : T ◁S ′ (from eq. (B.19e) for i = µ) repeatedly
to the Substitution Lemma, we get

∆ · ∅ ⊢w S µ ▷ tµ [v′1 , . . . , v′k/x1 , . . . , xk] : T ◁ S ′ (B.19j)

Since after(∆, α, S) = ∆, then eq. (B.19j) is the expected result.

[tChoice] From the rule, we know that for some µ ∈ I, T = {atom,T 1
µ , . . . , T n

µ } and

S = ⊕
{
!li
(
T̃i
)
.S i
}
i∈I (B.20a)

t = send
(
ι,
{
:lµ, e1, . . . , en

})
(B.20b)

∅ ⊢exp e j : T j
µ for all j ∈ 1..n (B.20c)

From the structure of t (eq. (B.20b)), term reduction (t
α
−→ t′) can be derived by several

rules, so we have to consider two sub-cases:

1. Derived by the rule [rChoice1], we know that α = τ and

t′ = send
(
ι,
{
:l, v1, . . . , vk−1, e′k, . . . , en

})
ek → e′k (B.20d)

Applying eq. (B.20c) (for j = k) and eq. (B.20d) to the Preservation (Expressions)
Lemma, we get ∅ ⊢exp e′k : Tk. Applying this and eq. (B.20c) to [tChoice] results in
∆ · ∅ ⊢w S ▷ t′ : T ◁ S µ. Since after(S , τ) = S and after(∆, α, S) = ∆, this holds.

47

2. [rChoice2] From this rule we know that

t′ = {:lµ, v1, . . . , vn}

α = ι!
{
:lµ, v1, . . . , vn

}
(B.20e)

where α (eq. (B.20e)) is the message being sent to the dual process with pid ι – so, we
only consider the second case of the Session Fidelity Theorem.
Recall eq. (B.20c), where we have ∅ ⊢exp e j : T j

µ for j ∈ 1..n. Notice, that the
types T j

µ were obtained from the session type S (eq. (B.20a)), where S contains !lµ
(

T 1
µ , . . . , T

n
µ

)
.S µ. Now, by the premise of [rChoice2], since e j = v j, then

∅ ⊢exp v j : T j
µ for all j ∈ 1..n (B.20f)

By the Value Typing Lemma, we also know that ∅ ⊢exp :lµ : atom. Using this latter
information and eq. (B.20f) in [tTuple] and [tExpression], we get the required result:

∅ ⊢exp :lµ : atom ∀ j ∈ 1..n ∅ ⊢exp v j : T j
µ

[tTuple]
∅ ⊢exp {:lµ, v1, . . . , vn} : {atom,T 1

µ , . . . , T n
µ }

[tExpression]
∆ · ∅ ⊢y S µ ▷ {:lµ, v1, . . . , vn} : T ◁ S µ

(B.20g)

Result from eq. (B.20g) holds as required, since after(S , α) = S µ and after(∆, α, S) =
∆.

[tKnownCall] From the rule, we know that

t = f (w, e2, . . . , en) (B.21a)
∅ ⊢exp ei : Ti for all i ∈ 2..n (B.21b)

From the structure of t (eq. (B.21a)), term transitions (t
α
−→ t′) can be derived using two

rules, so we consider two sub-cases:

1. [rCall1] From this rule, we know that t = f (v1, . . . , vk−1, ek, . . . , en), α = τ, w = v1
and

t′ = f
(
v1, . . . , vk−1, e′k, . . . , en

)
ek → e′k (B.21c)

Applying eq. (B.21b) (for i = k) and eq. (B.21c) to the Preservation (Expressions)
Lemma, we get

∅ ⊢exp e′k : Tk (B.21d)

By eqs. (B.21b) and (B.21d) and [tKnownCall], we get

∆ · ∅ ⊢w S ▷ f
(
v1, . . . , vk−1, e′k, . . . , en

)
: T ◁ S ′ (B.21e)

eq. (B.21e) holds since v1 = w.

48

2. [rCall2] From the rule, we know that α = f/n, w = ι and

t = f (ι, v2, . . . , vn) (B.21f)
t′ = t̄ [ι/y] [v2 , . . . , vn/x2 , . . . , xn]

Σ (f/n) = Ω where

Ω.return type = T
Ω.param types = T2, . . . , Tn

(B.21g)

∆ (f/n) = S (B.21h)

Since all known functions (i.e., f/n ∈ dom(∆)) by eq. (B.21h)) are already typechecked
once before, then from the function information environment (i.e., Σ) and eq. (B.21g),
we can assume that

∆ · Γ′ ⊢y S ▷ t̄ : T ◁ end (B.21i)

where Γ′ contains only the mapping from the parameter names to their types, i.e., Γ′ =
(y : pid, x2 : T2, . . . , xn : Tn) – our aim is to change Γ′ to ∅. This assumption in
eq. (B.21i) is possible since a well-formed Σ dictates that the only free variables in a
function body are the parameter types, or formally, for all f/n ∈ dom(Σ), we have

fv
(
Σ(f/n).body

)
\
(
Σ(f/n).params ∪ {Σ(f/n).dual}

)
= ∅

By eq. (B.21f) and Value Typing Lemma we know that ∅ ⊢exp ι : pid. Applying this
information and eq. (B.21i) to the Substitution Lemma results in

∆ · (x2 : T2, . . . , xn : Tn) ⊢y[ι/y] S ▷ t̄ [ι/y] : T ◁ end (B.21j)

where by the Variable Substitution Definition, y [ι/y] = ι = w.
Applying the Substitution Lemma multiple times to eqs. (B.21b) and (B.21j), results in

∆ · ∅ ⊢w S ▷ t̄ [ι/y] [v2 , . . . , vn/x2 , . . . , xn] : T ◁ end (B.21k)

as required, since after(S , f/n) = S and S ′ = end. Also, after(∆, f/n, S) = (∆, f/n : S),
but from eq. (B.21h), f/n is already mapped to S in the session typing environment,
therefore (∆, f/n : S) = ∆, as needed.

[tUnknownCall] From the rule, we know

t = f (w, e2, , . . . , en) (B.22a)
∅ ⊢exp ei : Ti for all i ∈ 2..n (B.22b)

From the premise we also know that

(∆, f/n : S) ·
(
y : pid, x̃ : T̃

)
⊢y S ▷ t̄ : T ◁ S ′ where x̃, T̃ , t̄,T and y are

obtained from the function information environment(i.e.,Σ) (B.22c)

From the structure of t (eq. (B.22a)), term transitions (t
α
−→ t′) can be derived using two

rules, so we consider two sub-cases:

49

1. [rCall1] From this rule we know that α = τ, and

t′ = f
(
v1, . . . , vk−1, e′k, . . . , en

)
ek → e′k (B.22d)

Applying eq. (B.22b) (for i = j) and eq. (B.22d) to the Preservation (Expressions)
Lemma, we get

∅ ⊢exp e′j : T j (B.22e)

Using eq. (B.22b) and eq. (B.22e) in the rule [tUnknownCall], results in

∆ · ∅ ⊢w S ▷ f
(
v1, . . . , vk−1, e′k, . . . , en

)
: T ◁ S ′

This holds since after(S , τ) = S and after(∆, τ, S) = ∆.

2. [rCall2] From the rule, we know that α = f/n and

t = f (ι, v2, . . . , vn) (B.22f)
w = ι (B.22g)
t′ = t̄ [ι/y] [v2 , . . . , vn/x2 , . . . , xn]

By eq. (B.22f) and the Value Typing Lemma we know that ∅ ⊢exp ι : pid. Applying this
information and eq. (B.22c) to the Substitution Lemma results in

(∆, f/n : S) ·
(
x̃ : T̃
)
⊢y[ι/y] S ▷ t̄ [ι/y] : T ◁ S ′ (B.22h)

where by the Variable Substitution Definition and eq. (B.22g), y [ι/y] = ι = w.
Applying the Substitution Lemma repeatedly to eqs. (B.22b) and (B.22h), results in

(∆, f/n : S) · ∅ ⊢w S ▷ t̄ [ι/y] [v2 , . . . , vn/x2 , . . . , xn] : T ◁ S ′

where after(S , f/n) = S and after(∆, f/n, S) = (∆, f/n : S), as required.

[tCase] From the rule, we know that for some type U,

t = case e do (pi → ti)i∈I (xall → tall) end (B.23a)
∆ · (xall : U) ⊢w S ▷ tall : T ◁ S ′ (B.23b)

∅ ⊢exp e : U (B.23c)
⊢wpat pi : U ▷ Γ′i for all i ∈ I (B.23d)

∆ · Γ′i ⊢
w S ▷ ti : T ◁ S ′ for all i ∈ I (B.23e)

By eq. (B.23a), term reduction, t
α
−→ t′, can be derived using two rules, so we consider two

sub-cases:

1. [rCase1] From the rule we know that t′ = case e′ do (pi → ti)i∈I (xall → tall) end.
From the premise we know that

e→ e′ (B.23f)

By eqs. (B.23c) and (B.23f) and the Preservation (Expressions) Lemma, we get

∅ ⊢exp e′ : U (B.23g)
50

Using eqs. (B.23b), (B.23d), (B.23e), (B.23g), and [tCase], we get

∆ · ∅ ⊢w S ▷ case e′ do (pi → ti)i∈I (xall → tall) end : T ◁ S ′

which holds as expected given that after(S , τ) = S and after(∆, τ, S) = ∆.

2. [rCase2] From the rule, we know that t = case v do (pi → ti)i∈I (xall → tall) end and
e = v. For convenience, we include the catch-all pattern in t with the remaining patterns,
so t = case v do (pi → ti)i∈I′end. So, for some j ∈ I′,

match(p j, v) = σ where σ = [v1 , . . . , vn/x1 , . . . , xn] (B.23h)
t′ = t jσ (B.23i)

By eqs. (B.23c), (B.23d) and (B.23h) and Lemma 13, we know that Γ′j = x1 :
T1, . . . , xn : Tn and

∅ ⊢exp vk : Tk for all k ∈ 1..n (B.23j)

Then, by repeatedly applying the Substitution Lemma to eq. (B.23j), (B.23e for i = j),
we get

∆ · ∅ ⊢w S ▷ t jσ : T ◁ S ′

This holds since after(S , τ) = S and after(∆, τ, S) = ∆.

[tExpression] From the rule, we know that

t = e (B.24a)
∅ ⊢exp e : T (B.24b)

From the structure of t (eq. (B.24a)), term transition (t
α
−→ t′) can only be derived using

[rExpression], resulting in an internal transition (i.e., α = τ)

e→ e′ (B.24c)

By Lemma 15 and eqs. (B.24b) and (B.24c), we know that

∅ ⊢exp e′ : T (B.24d)

Thus, case holds by [tExpression] and eq. (B.24d).

B.3. Proofs for Theorem 4
In this section, we provide the proofs of Proposition 3 which lead to the proofs for progress

of expressions (Lemma 16) and terms (Theorem 4).

Proposition 3. Any well-typed term (∆ · Γ ⊢wΣ S ▷ t : T ◁ S ′) following the branching session
type is able to process any valid incoming message, i.e.,

t = receive do
({
:li, p1

i , . . . , pn
i

}
→ ti
)

i∈I
end

S = &
{
?li
(
T 1

i , . . . , T n
i
)
.S i
}
i∈I

after(S , ?
{
lk, v1, . . . , vn

}
) = S k for some k ∈ I

 =⇒ match(p j
k, v

j)i∈1..n is defined

51

Proof. A well-typed term following the branching session type (&
{
. . .
}
), has to be precisely a

receive construct, as shown by term t. Such term can only be typed using the [tBranch] rule,
from which we infer that

simplepat(p j
i ,T

j
i)i∈I, j∈1..n

The simplepat statement indicates that all of the patterns used in the branches are simple ones,
i.e., p j

i has the form of a variable (x j
i) or a tuple of variables (x j

i). From the third statement,
we know that a message is valid if it matches with one of the labels available in t (i.e., lk for
some k ∈ I) and each payload value (v1, . . . , vn) matches with the payload types dictated by
the session type S . Therefore we can apply x j

i and v j (for all j ∈ 1..n) to the match function, to
obtain a series of variable substitutions, as required.

Lemma 16 (Progress (Expressions)). If ∅ ⊢exp e : T, then either e is a value, or else there exists
some e′ such that e→ e′

Proof. By induction on the typing derivation ∅ ⊢exp e : T . We consider the main cases.

[tTuple] From the rule, we know that e = {e1, . . . , ek, . . . , en} and

∅ ⊢exp ei : Ti for all i ∈ 1..n (B.25)

By the inductive hypothesis and eq. (B.25), expression ei can either be a value or reduce
to e′i . We consider both sub-cases:

1. If for any i ∈ 1..n, ei → e′i , then case holds by [reTuple], resulting in the reduction
e→ {v1, . . . , vi−1, e′i , . . . , en}.

2. Otherwise, if for all i ∈ 1..n, ei = vi, then case holds since the tuple {v1, . . . , vn} is a
value.

[tArithmetic] From the rule we know that e = e1 ⋄ e2 and

∅ ⊢exp e1 : number (B.26a)
∅ ⊢exp e2 : number (B.26b)

By the inductive hypothesis and eq. (B.26a), e1 can either be a value or reduce to e′1. We
consider both sub-cases:

1. If e1 → e′1, then case holds by [reOperation1], resulting in the reduction e→ e′1 ⋄ e2.

2. Otherwise, if e1 = v1, we have to consider the behaviour of e2, which by the inductive
hypothesis and eq. (B.26b) results in another two sub-cases:

2a. If e2 → e′2, then case holds by [reOperation2], resulting in the reduction e →
v1 ⋄ e′2.

2b. Otherwise, if e2 is a value, then case holds by [reOperation3].

Regarding the remaining cases: Cases [tBoolean], [tComparison], [tList] and [tNot] are anal-
ogous to the previous case. Finally, cases [tBasic], [tEList] hold immediately since e in
these instances is a value.

52

Theorem 4 (Progress). If ∆ · ∅ ⊢wΣ S ▷ t : T ◁S ′, then either t is a value, or else there exists some

term t′ and action α such that t
α
−→
Σ

t′ and after(S , α) is defined

Proof. By induction on the typing derivation ∆ · ∅ ⊢wΣ S ▷ t : T ◁ S ′.

[tLet] From the rule, we know that t = (x = t1; t2), and

∆ · ∅ ⊢w S ▷ t1 : T ′ ◁ S ′′′ (B.27)

By the inductive hypothesis and eq. (B.27), we know that after(S , α) is defined and that
the term t1 can be a value, or else transition to a new term t′1. We consider both sub-cases:

1. If t1
α
−→ t′1, then case holds by [rLet1], resulting in t

α
−→ t′1; t2.

2. Otherwise, if t1 = v1, then case holds by [rLet2], resulting in the internal transition
t
τ
−→ t2 [v2/x].

In both cases, after(S , α) remains defined from the inductive hypothesis.

[tBranch] From the rule, we know that

t = receive do ({:li, p̃i} → ti)i∈Iend (B.28)

S = &
{
?li
(
T̃i
)
.S i
}
i∈I (B.29)

A receive term (eq. (B.28)) transitions to a new subterm (ti) when a message (α =
?{:l j, v1, . . . , vn}) is received. An incoming message is guaranteed to match with one
of the available patterns, since (i) we are dealing with a trusted observer which sends
valid actions, and (ii) the branches are restricted to simple patterns (using simplepat)
so a well structured message will match with one of the branches. An incoming mes-
sage is matched to a branch using its label :l j (for j ∈ I). So by [rBranch], we know

that t
?{:l j,v1, ..., vn}

−−−−−−−−−−→ t jσ, where σ is computed using the Pattern Matching Definition (i.e.,
σ = match(p̃ j, v1, . . . , vn)). By the incoming message action and S from eq. (B.29),
after(S , ?{:l j, ṽ}) is define, as required.

[tChoice] From the rule, we know that for some µ ∈ I, then

t = send
(
ι,
{
:lµ, e1, . . . , en

})
∅ ⊢exp e j : T j

µ for all j ∈ 1..n (B.30)

S = ⊕
{
!li
(
T̃i
)
.S i
}
i∈I (B.31)

By Lemma 16 and eq. (B.30), any expression ei can be either a value, or else reduce to a
new expression, so we consider both sub-cases:

1. If, for any i ∈ 1..n, expression ei can be reduced (i.e., ei → e′i), then case holds by
[rChoice1], resulting in the internal transition:

t
τ
−→ send

(
ι,
{
:lµ, v1, . . . , vi−1, e′i , . . . , en

})
Since this is an internal transition, after(S , τ) is defined for any S .

53

2. Otherwise, if for all i ∈ 1..n, ei = vi, then case holds by [rChoice2], resulting in the tran-

sition t
ι!{:l,v1, ..., vn}
−−−−−−−−−−→ {:l, v1, . . . , vn}. In this case, a message containing {:l, v1, . . . , vn}

is sent to process with pid ι. From eq. (B.31), we know that S is an internal choice, thus
after(S , !{:l, ṽ}) is defined, as required.

[tKnownCall] From the rule, we know that

t = f (ι, e2, . . . , en)

∅ ⊢exp ei : Ti for all i ∈ 2..n (B.32)

By Lemma 16 and eq. (B.32), any expression ei can be either a value, or else reduce to a
new expression, so we consider both sub-cases:

1. If, for any i ∈ 2..n, expression ei can be reduced (i.e., ei → e′i), then case holds by
[rCall1], resulting in the internal transition: t

τ
−→ f
(
ι, v2, . . . , vi−1, e′i , . . . , en

)
.

2. Otherwise, if for all i ∈ 2..n, ei = vi, then case holds by [rCall2], resulting in the transi-

tion t
f/n
−−→ t′ [ι/y] [v2 , . . . , vn/x2 , . . . , xn]. The callee’s function body (i.e., t′) and the substitution

details (e.g. y, x2) are obtained directly from the function information environment Σ
using the transition action f/n, e.g. Σ (f/n) .body = t′.

For both cases, after(S , α) is defined since after accepts and session type S for internal
actions (f/n and τ).

[tUnknownCall] Analogous to previous case.

[tCase] From the rule, we know that

t = case e do (pi → ti)i∈Iend

∅ ⊢exp e : U (B.33)

By Lemma 16 and eq. (B.33), expression e can be either a value, or reduce to a new
expression. Consider both sub-cases:

1. If expression e can be reduced (i.e., e → e′), then case holds by [rCase1], resulting in
the internal transition: t

τ
−→ case e′ do (pi → ti)i∈Iend.

2. Otherwise, if e = v, then case holds by [rCase2], resulting in the internal transition
t
τ
−→ t jσ, where t j is the branch which pattern matches with v, and σ contains the

substitutions (i.e., σ = match(p j, v)).

[tExpression] From the rule, we know that

t = e (B.34a)
∅ ⊢exp e : T (B.34b)

Similar to the previous case, by Lemma 16 and eq. (B.34b), expression e can be either a
value, or reduce to a new expression. In case of the former, where e can be reduced (i.e.,
e → e′), then case holds immediately by [rExpression] (i.e., t

τ
−→ e′), where after(S , τ)

is defined. In the other case, when e is a value, then t is also a value, since t = e (by
eq. (B.34a)).

54

	Introduction
	Motivating Example
	A Formal Analysis
	The Actor Model
	Session Types
	Elixir Syntax
	Type System
	Typing in Action
	Elixir System

	Operational Semantics
	Validation of the ElixirST Type System
	Implementation
	Elixir Compilation with Session Types
	Bridging between Elixir and Our Model
	Case Study

	Related Work
	Type Systems for Elixir
	Session Type Systems

	Conclusion
	Additional Definitions
	Proofs
	Proofs for prop:closed-term
	Proofs for thm:session-fidelity
	Proofs for thm:progress

