
Grits: A Message-Passing Programming Language based on
the Semi-Axiomatic Sequent Calculus

Adrian Francalanzaa, Gerard Tabonea, Frank Pfenningb

aUniversity of Malta
bCarnegie Mellon University

Abstract

This paper introduces Grits, a channel-based message-passing concurrent language based on the semi-axiomatic
sequent calculus, a logical foundation underpinning intuitionistic session types. The language leverages modalities
from adjoint logic to express a number of programming idioms such as broadcast communication and message can-
cellation. The Grits interpreter is developed using Go, and consists primarily of two components: a type-checker and
an evaluator.

Keywords: behavioural types, concurrency, language implementation

1. Introduction

In channel-based programming languages such as Go [1], concurrent programs are susceptible to blocking bugs
due to communication errors caused by mismatching payloads and missing messages [2]. Asynchrony, as in case
of Erlang [3], can reduce deadlocks while increasing the risks of race conditions due to message reordering. Grits
is a concurrent programming language that runs on the Go concurrency platform. It prevents deadlocks and race
conditions statically via a type system that is based on the semi-axiomatic sequent calculus with adjoint logic [4, 5, 6],
a logical framework specifically developed to reason about asynchronous computation.

This paper showcases how Grits [7] can be used for type-driven development [8] that tames the complexities
of concurrent systems. Sec. 2 explains how behavioural types describe the communication protocols on channels,
leveraging adjoint logic modalities to express concurrency patterns that depart from strict linearity. The types act
as code component interfaces: they enable static error detection and facilitate compositional development. Sec. 3
describes the features of the Grits compilation and its architecture. Sec. 4 concludes. The full executable program
of the excerpts discussed in this paper may be found in https://github.com/gertab/Grits (archived [9]). The
readers are also encouraged to consult the companion paper [7] for details about the underlying theory of Grits.

2. Programming in Grits

2.1. Sax Expressed as an Adjoint Logic
Grits is based on the semi-axiomatic sequent calculus (Sax) [4, 10], a logical framework that blends features of the

sequent calculus with an axiomatic presentation of intuitionistic logic, replacing non-invertible rules by corresponding
axioms. It considers an extension based on adjoint logic [11, 5] to uniformly handle the linear (lin), affine (aff),
multicast (mul) and replication (rep) modalities with combinations of the contraction (i.e., copying) and weakening
(i.e., cancellation) substructural properties; these modalities can express a variety of common programming idioms
such as broadcast communication and message cancellations. Modalities are ordered as m ⪰ n, whenever modality
m has more substructural properties than n. E.g. lin is bottom since it neither supports contraction nor weakening
whereas rep is top because it supports both; aff and mul only support weakening and contraction respectively.

Email addresses: adrian.francalanza@um.edu.mt (Adrian Francalanza), gerard.tabone@um.edu.mt (Gerard Tabone),
fp@cs.cmu.edu (Frank Pfenning)

Preprint submitted to Science of Computer Programming July 1, 2025

https://github.com/gertab/Grits

R

P

Q1 . . . Qk

b

a1 ak

a1 : Am1
1 , . . . , ak : Amk

k ⊢ P :: (b : Bn)

Client of P interacting on channel b of type Bn

Providers to P on a1, . . . , ak following Am1
1 , . . . , A

mk
k

Figure 1: Hierarchical structure of processes, from P’s perspective

Grits uses (session) types, A, that are indexed by a specific modality, m, as Am. They can be composed of sub-
types at the same modality, e.g. Am ⊸ Bm, with the excepting of upshifts, ↑m

n An, and downshifts, ↓m
n Am; these delimit

transitions between modalities and require that m ⪰ n. The Grits type system uses these types to statically reason
about message-passing programs with a continuation-passing style of interaction. Typed processes are organised in
a hierarchical structure, where a process provides behaviour on a channel to its parent process, and is a client to the
channel behaviour of its children processes. The static analysis centers on the intuitionistic judgement eq. (1) below.

x1 : Am1
1 , . . . , xk : Amk

k ⊢ P :: (y : Bn) (1)

It defines an interface specification for process P, asserting that it provides the behaviour described by type Bn on the
channel y assuming that some k processes (to which it is client) provide a behaviour described by type Ami

i on channel
xi respectively. Eq. (1) observes the mode independence property: every modality in the antecedent, mi, must allow at
least as many structural properties as the modality in the succedent n, i.e., mi ⪰ n. At runtime, the variables x1, . . . , xk, y
in eq. (1) are instantiated to dynamically-allocated channels a1, . . . , ak, b, resulting in the process hierarchy in fig. 1,
where P provides on channel b to some R and is a client to Q1, . . . ,Qk on channels a1, . . . , ak.

2.2. Grits Type System and Static Programs

The type and process syntax of Grits are shown in tbl. 1, which also includes the concrete type syntax accepted
by Grits in ASCII. The process syntax is shown both from the perspective of whether a process acts as the provider,
or dually, if interacting from the other end as the client; see fig. 1. The Cut typing rule is a standard cut rule extended
with mode constraints. It encapsulates computation via the interaction between a spawning (client) process Q and a
spawned (provider) process P, over a dynamically allocated channel x. To preserve mode independence, all modalities
in the typing context Γ for P must be greater than the mode m of the type of channel x, denoted by Γ ⪰ m. In turn, this
mode m must support the mode n of the channel provided by Q, i.e., m ⪰ n. Structural rules such as Drop and Split,
manifesting weakening and contraction explicitly, rely on the independence guarantees for type soundness.

Γ ⪰ m m ⪰ n Γ ⊢ P :: (x:Am) Γ′, x:Am ⊢ Q :: (u:Bn)
Γ,Γ′ ⊢ x← new P; Q :: (u : Bn) Cut

m ∈ {aff, rep} Γ ⊢ P :: (w:Bn)
Γ, u:Am ⊢ drop u; P :: (w:Bn) Drop

m ∈ {mul, rep} Γ, x:Am, y:Am ⊢ P :: (w:Bn)
Γ, u:Am ⊢ ⟨x, y⟩ ← split u; P :: (w:Bn) Split

The communication rules are defined in terms of type connectives in tbl. 1 as either left rules (when the connective is
an antecedent) or right rules (when the connective is a succedent). The typing rules for output operations are defined
as axioms, modeling asynchronous interaction. Concretely, a send operation is typed by the right axiom ⊗R, when it
provides on a channel w described by the tensor type Am ⊗ Bm, i.e., send a value of type Am and continue as Bm, or by
the left axiom ⊸L when interacting on a client channel w described the implication type Am ⊸ Bm, i.e., once a value

2

Abstract Types Concrete Types Process Syntax (Provider) Process Syntax (Client)

A ⊗ B A * B send u⟨v,w⟩ ⟨x, y⟩ ← recv u; P
A ⊸ B A -* B ⟨x, y⟩ ← recv u; P send u⟨v,w⟩
⊕{l : Al}l∈L +{l1 : A1, ...} u.l⟨v⟩ case u (l⟨y⟩ ⇒ Pl)l∈L

&{l : Al}l∈L &{l1 : A1, ...} case u (l⟨y⟩ ⇒ Pl)l∈L u.l⟨v⟩
1 1 close u wait u; P
↑n

m Am m /\ n A x← shift u; P cast u⟨v⟩
↓m

n Am m \/ n A cast u⟨v⟩ x← shift u; P

Table 1: Abstract and concrete mapping for types and process syntax

of type Am is received, continue as Bm. Dually, a receive operation is typed by the ⊗L and ⊸R rules.

u : Am, v : Bm ⊢ send w⟨u, v⟩ :: (w : Am ⊗ Bm) ⊗R
Γ, x : Am, y : Bm ⊢ P :: (w : Cn)

Γ, u : Am ⊗ Bm ⊢ ⟨x, y⟩ ← recv u; P :: (w : Cn) ⊗L

Γ, x:Am ⊢ P :: (y:Bm)
Γ ⊢ ⟨x, y⟩ ← recv w; P :: (w:Am ⊸ Bm) ⊸R u:Am,w:Am ⊸ Bm ⊢ send w⟨u, v⟩ :: (v:Bm) ⊸L

For further details on the type system refer to [7].
A Grits program starts with a a collection of contractive [12] equi-recursive type definitions, tm = Am, that may

be mutually dependent. This is followed by a sequence of named process template declarations, each subject to the
type judgement of eq. (1); the static syntax refers to the channel on which a process provides via the self keyword.
The last line of a Grits program declares the main process that starts the computation by calling a process definition.

type t = m A // tm = Am

. . .

let p(x1 : m1 A1, . . ., xk : mk Ak) : m B = P // p(x1, . . . , xk) = P with
. . . x1:Am1

1 , . . . , xk:Amk
k ⊢ P :: (self:Bm)

exec q()

2.3. Type-Driven Development by Example in Grits
Consider the scenario where a hospital admits insured patients via their social security number (SSN). This value

is typically used by more than one entity, e.g. by the hospital itself to retrieve a patient’s records and medical history,
but also by the insurance agency to check whether the patient is covered. At the same time, an SSN contains sensitive
information and should only be shared with entities that genuinely need it (and actually use it) to maintain confiden-
tiality. A type-driven design allows us to divulge an SSN to multiple users and limit unnecessary communication
of this sensitive data by detecting unnecessary SSN disclosure. An SSN is therefore assigned the mul (multicast)
modality that allows copying for multiple uses but prohibits the discarding of disseminated SSNs via cancellations.

1 type ssn = mul +{ cons : (rep \/ mul digit) * ssn, nil : 1 }
2 type digit = rep +{ _0 : 1, _1 : 1, _2 : 1, _3 : 1, ..., _9 : 1 }

Concretely, we define the type ssn as a mul list of digits with a big-endian interpretation, where the most sig-
nificant number is read first, line 1. In Grits, lists are encoded as processes that provide the choice of either cons
followed by the communication of a digit and another ssn, or a nil which then closes the interaction, i.e., type 1
(see tbl. 1). Since the use of an ssn does not necessarily need to access all of its digits, a digit is assigned a rep
modality to allow weakening. To delineate the change in modality, a downshift from rep to mul is used before type
digit on line 1, i.e., (rep \/ mul digit). For illustrative purposes,1 a digit type is also encoded as a process that
selects a label _n (where n ∈ 0..9) and closes the channel it provides on.

1The current version of Grits does not support basic datatypes such as integers.

3

let hospital_admission(n : ssn) : lin +{valid : 1, not_valid : 1} // hospital interface
. . .

let insurance(n : ssn) : lin 1 // insurance interface

Our type-driven methodology facilitates a compositional approach to software development. Once the type ssn is
defined, line 1, we can describe the interfaces for the insurance and hospital_admission processes (above) that
handle the processing of an SSN. This permits the independent development of the code for the main process.

3 let main() : lin 1 =
4 ss : ssn <- new ssExample(); // contains social security number 43210
5 <ss1, ss2> <- split ss;
6

7 i <- new insurance(ss1); wait i; // SS used by insurance agency
8

9 h <- new hospital_admission(ss2); // SS used by hospital admission
10 case h (
11 valid<h’> => print found_patient; wait h’; close self
12 | not_valid<h’> => print not_found; wait h’; close self
13)
14

15 exec main() // Execute main

The main process that drives our program creates a new SSN on line 4 that encodes some sample number, e.g.
43210, and is bound to the variable ss. On line 5 it is copied to ss1 and ss2, as permitted by modality mul of type
ssn (see line 1). The first copy, ss1, is passed on to the insurance process for record keeping whereas the second
copy, ss2, is passed to the hospital_admission process to determine if it is a valid SSN or not. The main process
prints the outcome of this validation check and closes the channel it provides on. Without exposing its internals, the
interface of the hospital_admission process informs the main process that it must (linearly) handle the value sent
by it, modality lin, and be prepared to branch for a selection on either label valid or not_valid, lines 10 to 13.

16 let insurance(n : ssn) : lin 1 =
17 n’ <- new encrypt(n);
18 ... // code for recording encrypted SSN
19 close self
20

21 let encrypt(n : ssn) : ssn =
22 case n (
23 cons<c> =>
24 <curr_dgt, rem> <- recv c;
25 curr_rep <- shift curr_dgt; // from mul to rep
26 case curr_rep (
27 _0<c> =>
28 inv_dgt : digit <- new self._9<c>; // inverts 0 to 9
29 inv_mul : rep \/ mul digit <- new cast self<inv_dgt> // from rep to mul
30 rem_inv : ssn <- new encrypt(rem);
31 inv : mul ((rep \/ mul) digit) * ssn <- new send self<inv_mul,rem_inv>;
32 self.cons<inv>
33 | _1<c> => ... // inverts 1 to 8
34 | ...
35)
36 | nil<c> => self.nil<c>
37)

The insurance process, line 16, encrypts an SSN before recording it. Our encryption, line 21 traverses the SSN
and inverts every digit, see line 28 for case _0<c>. E.g. 43210 is encoded as 56789. Note how a digit needs to be
(down)shifted before it operated on, line 25, and then cast (i.e., upshifted), line 29 to be composed back as an SSN.

4

Grits’s behavioural type-driven approach guides the implementation: from type ssn on line 21, the encrypt process
knows it needs to input a digit after branching on a cons selection, line 24, and that this digit needs to be shifted from
mul to rep before it is used, line 25. Omitting any of these commands immediately results in a type-checking error.

38 let hospital_admission(n : ssn) : lin +{valid : 1, not_valid : 1} =
39 res : mul +{even : 1, odd : 1} <- new even_odd(n); // check if n is even
40 case res (
41 even<c> =>
42 ... // wait on c and spawn a process providing on c’
43 self.valid<c’>
44 | odd<c> =>
45 ... // wait on c and spawn a process providing on c’
46 self.not_valid<c’>
47)
48

49 let even_odd(n : ssn) : mul +{even : 1, odd : 1} = // if n is even or odd
50 c : rep 1 <- new close self;
51 d : digit <- new self._0<c>; // dummy digit
52 even_odd_inner(n, d)
53

54 let even_odd_inner(n : ssn, prev : digit) : mul +{even : 1, odd : 1} =
55 case n (
56 cons<n’> =>
57 <curr, tail> <- recv n’;
58 curr_rep <- shift curr;
59 drop prev; // may be discarded in rep mode
60 even_odd_inner(tail, curr_rep)
61 | nil<n’> =>
62 wait n’;
63 even_odd_digit(prev) // check the last digit
64)
65

66 let even_odd_digit(d : digit) : mul +{even : 1, odd : 1} =
67 case d (
68 _0<c> => wait c;
69 c’ : mul 1 <- new close self;
70 self.even<c’> // select even branch
71 | _1<c> => ...
72 self.odd<c’> // select odd branch
73 | _2<c> => ...
74 ...
75)

For our example, the hospital_admission process deems an SSN valid when it is even, lines 39 and 41. This
check involves traversing an SSN to its last digit, line 49, to check if it is even using process even_odd_digit, line
66. The traversal is carried out by the process even_odd_inner, line 54; it assumes that an SSN is at least one digit
long, which explains the dummy digit initialisation on line 51. Importantly, since digits are typed at modality rep,
even_odd_inner may cancel (i.e., using drop) the digits, line 59, preceding the last one (which is used), line 63.

76 // Initialize each process individually
77 prc[ssn1, ssn2] : ssn = ssExample() // Implicit splitting
78 prc[i] : lin 1 = insurance(ssn1) // records kept by insurance
79 prc[h] : lin +{found : 1, not_found : 1} = hospital_admission(ssn2) // admissions check
80 prc[m] : lin 1 = wait i;
81 case h (...) // handle result obtain from hospital admission

5

To facilitate debugging, Grits permits individual process instantiation with channel binding to recreate a specific
concurrency interleaving, instead of having to rely on the main launcher process to regenerate the interleaving from
scratch. The snapshot on lines 77–81 initiates execution with multiple processes that provide on the channels ssn1,
ssn2, i, h and m. Lines 77 creates two processes running ssExample(), providing on ssn1 and ssn2 respectively.

82 assuming ssn1 : ssn, // process providing on ss1 is assumed to have type ssn
83 h : lin +{found : 1, not_found : 1}
84 prc[i] : lin 1 = insurance(ssn1)
85 prc[m] : lin 1 = wait i;
86 case h ... // handle result obtain from the hospital admission process

A type-driven approach also permits incremental (typed) development in Grits, typechecking snippets without having
to write the full codebase. Using the keyword assuming, the code above (lines 82–86) does not define the precise
computation code for the processes providing on the channels ssn1 and h. Yet, by describing their type (interface),
we can still type-check the incomplete program, e.g. ssn1 is assumed to have type ssn on line 82.

3. Using Grits

Grits is a CLI application offering several flag-based features to configure its interpretation pipeline. To type-
check and execute a program file.grits one can use the following command, where grits is the executable
version of our tool:

$./grits path/to/file.grits
$
$ Typecheck successful
$ Spawning 2 processes...

Grits performs static analysis based on the type system described in sec. 2.2. It reports type errors with informative
messages, including the line number where each issue occurs. For instance, the type errors discussed in sec. 2.3, such
as invalid mode shifting or improper name usage (e.g. omitting a required receive action), are automatically detected.

Consider the main process from sec. 2.3, which correctly handles linear results returned from insurance and
hospital services. Suppose we erroneously modify this process by ignoring the hospital result received over channel
h, replacing lines 10–13 with

10 drop h; close self // erroneously dropping a linear channel

When executed, this triggers the type-checking error shown below:

$./grits examples/social_security.grits
$ Initiating typechecking
$ (Line 10) Typechecking error in function main(); unable to drop h, which is
↪→ in linear mode

The tool offers further functionality to fine-tune the computation process. For instance, the output verbosity can be
adjusted using --verbosity <level>, where more details relating to type-checking and execution can be obtained.
E.g. the following command type-checks a program, detailing the typing rules used.

$./grits --verbosity=3 examples/social_security.grits

The tool itself is compiled using the Go language as a concurrent executable, leveraging the native concurrency
features provided by the Go platform in order to exploit any parallelism proffered by the underlying hardware. Go
offers cross-platform compilation, making it simple to run Grits on most operating systems. We also offer a Docker-
ized version for a simpler testing environment, without having to install any dependencies. The Grits tool acts as an
interpreter that takes grits programs as input and processes them in three parts using: a parser, a type-checker and
an evaluator (akin to a tree-walk interpreter [13]); see fig. 2.

The parser uses a Yacc-based library called goyacc, which parses our Grits-based language into analysable Go
structures [1], acting as an abstract syntax tree (AST) of the grits programs. The type-checker uses syntax-directed

6

.grits

....

....

Grits programs

Parser Type-checker

Type errors
Grits Interpreter

Evaluator

. . .

Go channels Goroutines

Figure 2: Pipeline for type-checking and executing programs using Grits

rules which ensure that the programs follow the specifications dictated by Sax; see sec. 2.2. Apart from reading the
program to check for its well-typedness, the type-checker augments the intermediary code by annotating each name
with a polarity inferred from the types. These annotations guide execution when handling forwarding via buffered
channels: depending on polarity, a forwarding process either sends a request to a provider or awaits a message to
forward to a client; see [7] has more details. For incomplete programs (i.e., using the assuming keyword), one can use
the --noexecute flag to only parse and type-check programs.

The tool leverages the concurrency abstractions offered by the Go language to execute the concurrent processes
described in grits programs on multicore systems. The interpretation pipeline depicted in Fig. 2 translates each
grits process to a corresponding Go coroutine (called goroutine) providing the behaviour described by the process
on a dedicated Go channel. This maintains a one-to-one mapping between the concurrency units of the respective
languages, i.e., Grits and Go. Grits also supports two execution interpretations via the synchronous (--sync) and
asynchronous (--async) communication modes, which correspond to Go’s unbuffered or buffered channels, respec-
tively; asynchrony at the level of grits processes (where channels are used once) ensures that the two interpretations
are operationally equivalent. The two interpretations were used to conduct empirical evaluations and investigate their
respective runtime performance. Benchmarking information, such as the execution timings for each execution mode
were obtained using the --benchmark flag; see [7] for details.

4. Conclusion

We present a tool, called Grits, that interprets the semi-axiomatic sequent calculus with adjoint logic as channel-
based message-passing concurrent programs in Go. The Curry-Howard correspondence links intuitionistic session
types to channel-passing concurrent processes, resulting in a language that inherits desirable properties such as dead-
lock freedom and session fidelity. In the future we plan on extending Grits to support shorthand notation that makes
the code less verbose, such as eliding drop commands, or writing

4 <ss1, ss2> : ssn <- new ssExample();

in lieu of lines 4–5. We also plan to extend the language to handle the notion of shared processes [14, 15, 16] that
co-exists alongside replicated processes with a copy semantics.

4.1. Related Work
The closest tools to Grits are a pedagogic tool [10], and SNAX [17], which are both based on the semi-axiomatic

sequent calculus. Although the pedagogic tool targets a channel-based language, it can only support linear compu-
tation (i.e., no duplication or cancellation). SNAX supports all four modalities like Grits, but targets a functional
programming language instead. Both tools are based on Standard ML implementations. Other tools use intuitionistic
session types. Rast [18] integrates session types with arithmetic refinements, while Nomos [15] extends this for smart
contracts. Nomos, along with Ferrite [16] offer a notion of type shifting, between linear and shared processes, but
does not support a copy semantics. Several other tools [19, 20, 21, 22, 23] employ the classical binary or multiparty
session types to verify message flows in existing languages. For instance, Lange et. al. [22] infers behavioral types
from Go programs to ensure deadlock-free communication, addressing the limitations of Go’s compiler in detecting
message-passing errors [2].

7

Metadata

Nr.
C1 Current code version v1.0
C2 Permanent link to code/repository used for this

code version
https://github.com/gertab/Grits

C3 Permanent link to Reproducible Capsule https://doi.org/10.5281/zenodo.
10732024

C4 Legal Code License GNU GPLv3
C5 Code versioning system used git
C6 Software code languages, tools, and services

used
Go

C7 Compilation requirements, operating environ-
ments and dependencies

Go 1.21 or later, multi-platform (Linux, ma-
cOS, Windows)

C8 If available, link to developer documentation/-
manual

C9 Support email for questions gerard.tabone@um.edu.mt

Table 2: Code metadata

Acknowledgements

This work has been supported by the Security Behavioural APIs project (No: I22LU01-01) funded by the UM Re-
search Excellence Funds 2021, the Tertiary Education Scholarships Scheme (Malta) and IPCEI-UM (No: E24LO17-
01) project under Malta Enterprise.

References

[1] Effective Go - The Go Programming Language (n.d.). URL https://go.dev/doc/effective_go#sharing
[2] T. Tu, X. Liu, L. Song, Y. Zhang, Understanding real-world concurrency bugs in go, in: I. Bahar, M. Herlihy, E. Witchel, A. R. Lebeck (Eds.),

Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2019, Providence, RI, USA, April 13-17, 2019, ACM, 2019, pp. 865–878. doi:10.1145/3297858.3304069.

[3] F. Cesarini, S. Thompson, Erlang Programming: A Concurrent Approach to Software Development, O’Reilly Media, 2009.
[4] H. DeYoung, F. Pfenning, K. Pruiksma, Semi-axiomatic sequent calculus, in: Z. M. Ariola (Ed.), 5th International Conference on Formal

Structures for Computation and Deduction, FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Conference), Vol. 167 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 29:1–29:22. doi:10.4230/LIPICS.FSCD.2020.29.

[5] K. Pruiksma, F. Pfenning, A message-passing interpretation of adjoint logic, J. Log. Algebraic Methods Program. 120 (2021) 100637.
doi:10.1016/J.JLAMP.2020.100637.

[6] K. Pruiksma, Adjoint logic with applications, Ph.D. thesis, Carnegie Mellon University (6 2024). doi:10.1184/R1/25900861.v1.
[7] A. Francalanza, G. Tabone, F. Pfenning, Implementing a Message-Passing Interpretation of the Semi-Axiomatic Sequent Calculus (SAX),

in: I. Castellani, F. Tiezzi (Eds.), Coordination Models and Languages - 26th IFIP WG 6.1 International Conference, COORDINATION
2024, Held as Part of the 19th International Federated Conference on Distributed Computing Techniques, DisCoTec 2024, Groningen, The
Netherlands, June 17-21, 2024, Proceedings, Vol. 14676 of Lecture Notes in Computer Science, Springer, 2024, pp. 295–313. doi:10.
1007/978-3-031-62697-5_16.

[8] E. Brady, Type-Driven Development with Idris, Manning Publications, 2017.
[9] G. Tabone, Grits: Implementing a Message-Passing Interpretation of the Semi-Axiomatic Sequent Calculus (Sax) (artefact for Coordina-

tion’24), https://github.com/gertab/Grits (May 2025). doi:10.5281/zenodo.10837897.
[10] F. Pfenning, Lecture notes on Semi-Axiomatic Sequent Calculus, Course notes for Substructural Logics (15-836). Accompanying tool avail-

able from https://www.cs.cmu.edu/~fp/courses/15836-f23/resources.html (2023).
[11] K. Pruiksma, W. Chargin, F. Pfenning, J. Reed, Adjoint logic, Unpublished manuscript, April (2018).
[12] S. J. Gay, M. Hole, Subtyping for session types in the pi calculus, Acta Informatica 42 (2-3) (2005) 191–225. doi:10.1007/

S00236-005-0177-Z.
[13] T. Ball, Writing an Interpreter in Go, Thorsten Ball, 2018.
[14] S. Balzer, F. Pfenning, Manifest sharing with session types, Proc. ACM Program. Lang. 1 (ICFP) (2017) 37:1–37:29. doi:10.1145/

3110281.
[15] A. Das, S. Balzer, J. Hoffmann, F. Pfenning, I. Santurkar, Resource-aware session types for digital contracts, in: 34th IEEE Computer Security

Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021, IEEE, 2021, pp. 1–16. doi:10.1109/CSF51468.2021.00004.

8

https://github.com/gertab/Grits
https://doi.org/10.5281/zenodo.10732024
https://doi.org/10.5281/zenodo.10732024
https://go.dev/doc/effective_go#sharing
https://go.dev/doc/effective_go#sharing
https://doi.org/10.1145/3297858.3304069
https://doi.org/10.4230/LIPICS.FSCD.2020.29
https://doi.org/10.1016/J.JLAMP.2020.100637
https://doi.org/10.1184/R1/25900861.v1
https://doi.org/10.1007/978-3-031-62697-5_16
https://doi.org/10.1007/978-3-031-62697-5_16
https://github.com/gertab/Grits
https://doi.org/10.5281/zenodo.10837897
https://www.cs.cmu.edu/~fp/courses/15836-f23/resources.html
https://doi.org/10.1007/S00236-005-0177-Z
https://doi.org/10.1007/S00236-005-0177-Z
https://doi.org/10.1145/3110281
https://doi.org/10.1145/3110281
https://doi.org/10.1109/CSF51468.2021.00004

[16] R. Chen, S. Balzer, B. Toninho, Ferrite: A judgmental embedding of session types in rust, in: K. Ali, J. Vitek (Eds.), 36th European
Conference on Object-Oriented Programming, ECOOP 2022, June 6-10, 2022, Berlin, Germany, Vol. 222 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022, pp. 22:1–22:28. doi:10.4230/LIPICS.ECOOP.2022.22.

[17] Lecture notes on Adjoint Functional Programming for Pfenning’s course at OPLSS 2024, accompanying tool available from https://
bitbucket.org/fpfenning/snax (2024). URL https://www.cs.uoregon.edu/research/summerschool/summer24/lectures/
pfenning3.pdf

[18] A. Das, F. Pfenning, Rast: A language for resource-aware session types, Log. Methods Comput. Sci. 18 (1) (2022). doi:10.46298/
LMCS-18(1:9)2022.

[19] S. Fowler, An Erlang implementation of multiparty session actors, in: M. Bartoletti, L. Henrio, S. Knight, H. T. Vieira (Eds.), Proceedings
9th Interaction and Concurrency Experience, ICE 2016, Heraklion, Greece, 8-9 June 2016, Vol. 223 of EPTCS, 2016, pp. 36–50. doi:
10.4204/EPTCS.223.3.

[20] R. Neykova, N. Yoshida, Multiparty session actors, Log. Methods Comput. Sci. 13 (1) (2017). doi:10.23638/LMCS-13(1:17)2017.
[21] A. Scalas, N. Yoshida, Lightweight session programming in scala, in: S. Krishnamurthi, B. S. Lerner (Eds.), 30th European Conference on

Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy, Vol. 56 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016, pp. 21:1–21:28. doi:10.4230/LIPIcs.ECOOP.2016.21.

[22] J. Lange, N. Ng, B. Toninho, N. Yoshida, A static verification framework for message passing in go using behavioural types, in: Proceedings
of the 40th International Conference on Software Engineering, ICSE ’18, Association for Computing Machinery, New York, NY, USA, 2018,
pp. 1137–1148. doi:10.1145/3180155.3180157.

[23] A. Francalanza, G. Tabone, ElixirST: A session-based type system for Elixir modules, J. Log. Algebraic Methods Program. 135 (2023)
100891. doi:10.1016/J.JLAMP.2023.100891.

9

https://doi.org/10.4230/LIPICS.ECOOP.2022.22
https://www.cs.uoregon.edu/research/summerschool/summer24/lectures/pfenning3.pdf
https://bitbucket.org/fpfenning/snax
https://bitbucket.org/fpfenning/snax
https://www.cs.uoregon.edu/research/summerschool/summer24/lectures/pfenning3.pdf
https://www.cs.uoregon.edu/research/summerschool/summer24/lectures/pfenning3.pdf
https://doi.org/10.46298/LMCS-18(1:9)2022
https://doi.org/10.46298/LMCS-18(1:9)2022
https://doi.org/10.4204/EPTCS.223.3
https://doi.org/10.4204/EPTCS.223.3
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.1145/3180155.3180157
https://doi.org/10.1016/J.JLAMP.2023.100891

	Introduction
	Programming in Grits
	Sax Expressed as an Adjoint Logic
	Grits Type System and Static Programs
	Type-Driven Development by Example in Grits

	Using Grits
	Conclusion
	Related Work

