
Static Checking of
Concurrent Programs in Elixir

Using Session Types

Gerard Tabone Adrian Francalanza

Technical Report

March 2022

Faculty of ICT

University of Malta

Abstract

Message-passing concurrency is becoming increasingly popular, and is
prevalently used in several programming languages, such as Go, Scala, Rust and
Elixir. In message-passing concurrency, processes interact with each other by
exchanging messages. If these messages are sent incorrectly, certain behavioural
issues, such as communication mismatches and deadlocks, may arise.

We employ session types, which are a form of behavioural types, to detect
these kinds of communication errors at compile-time, in the context of the Elixir
language. More concretely, session types are protocols used to define the whole
message-based interaction between processes, by dictating the order and type of
messages that can be sent and received. We use these protocols to annotate public
functions in Elixir modules to formalise their expected behaviour in terms of the
messages sent and received when executing the body of said functions. Then,
we design a (session) type system that uses these protocols to statically analyse
and determine whether the functions observe the session type specification. This
type system is validated from a formal perspective, by showing that it follows the
session fidelity property. Moreover, the type system is validated empirically, by
being implemented as a tool, which automates typechecking for Elixir modules.

ii

Contents

1. Introduction 1
1.1 Aims and Objectives . 6
1.2 Solution Overview . 7
1.3 Document Outline . 9

2. Background 11
2.1 Type Systems . 11
2.2 Labelled Transition System . 15
2.3 Concurrency . 16

2.3.1 Shared State Concurrency 17
2.3.2 Message-Passing Concurrency 17

2.4 Elixir . 19
2.4.1 Functional Aspect . 19
2.4.2 Concurrent Aspect . 22
2.4.3 Present Validations . 23

2.5 Conclusion . 24

3. A Formal Analysis 25
3.1 Outline of the Approach . 25
3.2 Elixir Syntax . 27

3.2.1 Session Types . 27
3.2.2 Modules and Functions . 30
3.2.3 Terms and Expressions . 33

3.3 Session Typing . 35
3.3.1 Expression Typing . 36
3.3.2 Pattern Typing . 37
3.3.3 Term Typing . 39
3.3.4 Module Typing . 44

3.4 Typing in Action . 45
3.5 Semantics . 49
3.6 Conclusion . 53

iii

4. Metatheory 55
4.1 Validating the Transition Semantics 57
4.2 Properties of Typing . 60
4.3 Session Fidelity . 65
4.4 Conclusion . 79

5. Elixir Implementation 80
5.1 Integration within Elixir . 81
5.2 Uniting Elixir and Our Model . 83
5.3 Flexibility . 86
5.4 Improving the Type System from a Practical Perspective 88
5.5 Case Study . 90
5.6 Discussion . 95
5.7 Conclusion . 96

6. Related Work 97
6.1 Session Types for Actor-Based Languages 97
6.2 Session Types for Channel-Based Languages 100
6.3 Type System for Elixir . 102

7. Conclusion 104
7.1 Future Work . 106

References 107

A. Additional Definitions 116

B. Proofs 119

C. Complete Example 131

iv

List of Figures

1.1 Auction protocol . 3

3.1 An Elixir module consisting of public and private functions,
interacting with client processes . 26

3.2 Types . 28
3.3 Elixir syntax . 31
3.4 Expression typing . 36
3.5 Pattern typing . 38
3.6 Term typing . 41
3.7 Term transition semantic rules . 50
3.8 Expression semantic rules . 53

4.1 Lemmas and propositions leading to session fidelity 56

5.1 Stages of Elixir compilation along with the session type implementation 81
5.2 Erroneous implementation (from Listing 1.2) in VSCode (running

ElixirLS) . 83
5.3 Spawning two processes . 85
5.4 An Elixir snippet, along with its equivalent using the fork-join concept 86
5.5 Snippet from Listing 1.1 in normal form, along its equivalent with

expanded macros . 87
5.6 An incorrect implementation for a function following the session type

!A.!B.end, along with an improved version 89
5.7 Snippet showing an incorrect and a correct way of using multiple

branches . 90
5.8 Interactions with Duffel API . 91

C.1 Counter protocol . 133

v

List of Definitions

2.1 Definition (Labelled Transition System) 16
2.2 Definition (The Actor Model) . 18

3.1 Definition (Duality) . 29
3.2 Definition (Closed and Open Terms) 34
3.3 Definition (Type) . 37
3.4 Definition (Well-Formedness of Σ) 39
3.5 Definition (Pattern Matching) . 51
3.6 Definition (Variable Patterns) . 52

4.1 Definition (After Function) . 68

A.1 Definition (Free Variables) . 116
A.2 Definition (Bound Variables) . 117
A.3 Definition (Agree Function) . 117
A.4 Definition (Function Details) . 117
A.5 Definition (Functions Names and Arity) 117
A.6 Definition (All Session Types) . 118
A.7 Definition (Variable Substitution) 118

vi

1. Introduction

Concurrency [1] is ubiquitous in modern computing. Most systems, ranging

from small embedded systems to large cloud servers, run on multiple processors

working in parallel. Concurrency refers to units of computations, called processes,

that can execute simultaneously with other processes. Concurrent processes

typically interact with one another throughout their execution, and they do so

via either message-passing or shared memory. In message-passing concurrency,

isolated processes share data by exchanging messages. Since multiples processes

cannot access common data, memory-based issues such as data races, cannot

occur. This makes message-passing concurrency more structured than the shared-

state counterpart, since the interactions and interferences can be more readily

delineated [2]. For this reason, the message-passing paradigm is becoming

increasingly popular, with a number of modern languages adopting it. Examples

include Go [3], Scala [4], Rust [5], Swift [6] and Elixir [7], the last being our language

focus.

Programming concurrent software, even when this is limited to message-passing,

is inherently harder when compared to its sequential counterpart. Concurrent

programs may compile successfully, but then they may behave in a different manner

than intended, or even exhibit unexpected errors at runtime. These problems may

be caused by a number of factors. For example, if a message is sent with an unusual

form, it may cause a communication mismatch (i.e., failing to handle an incoming

1

Chapter 1. Introduction

1 defmodule Auction do

2 @spec buyer(pid, number) :: atom

3 def buyer(auctioneer_pid, amount) do

4 send(auctioneer_pid, {:bid, amount})

5
6 receive do

7 {:sold} -> :yay

8 {:higher, value} -> decide(auctioneer_pid, amount, value)

9 end

10 end

11
12 @spec decide(pid, number, number) :: atom

13 defp decide(auctioneer_pid, amount, value) do

14 if value < 100 do

15 send(auctioneer_pid, {:continue})

16 buyer(auctioneer_pid, amount + 10)

17 else

18 send(auctioneer_pid, {:quit})

19 :ok

20 end

21 end

22 ...

23 end

Listing 1.1: Auction system written in Elixir

message or sending an unexpected message). Also, if messages are exchanged in an

incorrect order, they may cause a deadlock (i.e., multiple processes waiting forever

for each other). A concurrent program may only execute correctly, if it is free from

these kinds of behavioural issues.

For instance, consider an auction system, adapted from [8], whereby a buyer

process bids on some item in an auction. The auction is moderated by an

auctioneer, who may either accept the bid, declaring the item as sold, or else,

inform the buyer of a new higher bid, allowing room for further bids. A sample

Auction module, written in the Elixir language, is shown in Listing 1.1, which

implements the buyer’s side of the interaction. It offers one public function called

buyer on lines 3–10, that takes two arguments: the process identifier (pid) of the

interacting auctioneer, auctioneer_pid , and the starting bid value, amount .

The interaction starts with the buyer sending an initial bid to the auctioneer

(line 4); this message contains the label :bid and the amount as a payload. Then,

2

Chapter 1. Introduction

AuctioneerBuyer

bid(number)

sold()

higher(number)

quit()

continue()

op
tion

s

1

2

op
tion

s

1

2

re
cu
rs

e

Figure 1.1: Auction protocol

the buyer waits for a reply. This happens in the receive construct (lines 6–

9), which acts as a blocking mechanism and it continuously checks the process’s

mailbox until some message has been received. It only unblocks when a message

containing the expected format is found. The buyer can accept two types of

messages; a label :sold, showing that the bid was accepted, or a label :higher

carrying a new bid value , showing the outbid value. The code then branches

accordingly. In case of :sold, the function returns, terminating the interaction

with notification :yay. In case of :higher, the remaining interaction is handled by

the private function called decide (line 13), where the buyer has two choices: to

either increase the bid or opt out of the auction. In line 14, the buyer decides to

only consider a new bid if the expected amount is less than a e100. If it is the case,

the buyer sends a request to remain in the auction, containing a label :continue.

Then, it recurses back to the beginning updating the new bid amount (line 16). On

the other hand, if the bidding amount went beyond the buyer’s expectation, then

the buyer can send a message to :quit the auction (line 18), before terminating

the interaction.

The whole series of messages exchanged can be depicted as the protocol shown

3

Chapter 1. Introduction

3 def buyer(auctioneer_pid, amount) do

4 send(auctioneer_pid, {:bid, true}

5
6 receive do

7 # {:sold} -> :yay

8 {:higher, value} ->

9 if value < 100 do

10 send(auctioneer_pid, {:continue})

11 buyer(auctioneer_pid, amount + 10)

12 ...

13 end

14 end

15 end

Listing 1.2: Buyer in an auction with issues

in Figure 1.1. It consists of two parties, a buyer and an auctioneer, that both must

follow the protocol from their point-of-view. The protocol dictates that the buyer

must send a message to the auctioneer containing a label bid with some payload

of type number. Then, the auctioneer makes a choice to either send a label sold

or a label higher with some number. In case of higher, then the buyer can choose

to either send quit, to terminate the session, or send continue, to restart the

protocol from the beginning. If the buyer follows the protocol, but the auctioneer

veers away (or vice versa), then the interaction fails. Correct computation occurs

only if both parties adhere to their side of the protocol.

Since this protocol is only implicit (i.e., not written down), the implementation

might unknowingly deviate from it. These deviations might be small enough

to go unnoticed, but then, cause the program to misbehave at runtime. For

example, consider an erroneous buyer function, redefined in Listing 1.2. The

buyer mistakenly sends a bid request with a payload true in line 4. This may cause

communication mismatch on the auctioneer’s side, who might be only handling bids

with a payload of type number, as expected in Figure 1.1. Payload mismatches

can also be induced by the auctioneer. In line 8, if the buyer receives a label

higher with a value :ok, the program will misbehave, since the buyer would be

expecting a number and not a boolean (i.e., higher(number)). This incorrect value

4

Chapter 1. Introduction

will then propagate to the subsequent if statement (line 9), where the expression

‘:ok < 100’ will evaluate to an unexpected result.1

Another example is shown in line 7. If this line is (accidentally) removed, the

buyer would only be able to handle messages labelled higher. If the auctioneer

replies with a label sold, as allowed by Figure 1.1, the buyer will not be able to

handle the label sold, causing the program to deadlock. So, we need a way to

define protocols explicitly and pass them to the compiler, which should be able to

pinpoint these issues earlier on.

These behavioural issues, albeit crucial, are typically ignored during

compilation. For example, languages such as Scala, Rust and Go, offer some basic

checks [5, 9, 10]. They are able to restrict channels (used to transfer messages) to

a fixed type, thus preventing incorrectly formed messages from being transferred.

Conversely, languages such as Erlang and Elixir, offer complete freedom in message-

passing, thus allowing any messages to be sent to any process [11, 12]. Nevertheless,

none of these languages offer a way to check messages in the context of the whole

interaction (e.g., by using a protocol), leaving them susceptible to behavioural

issues. In the case of Elixir, erroneous programs, such as Listing 1.2, will be deemed

correct by the present Elixir compiler, even though they will be ill-behaved during

runtime. This is because the Elixir compiler and other static analyser tools tend

to focus only on the functional part of the language. For example, the Elixir

compiler ensures that the correct syntax is used, or that functions are called with

the correct number of parameters. Other tools, such as the Dialyzer [13, 14], extend

these static validations. The Dialyzer uses the @spec annotations (e.g., line 2 of

Listing 1.1) to enforce that the parameters and return types are of the expected

type (e.g., when invoking the function buyer , the second argument, called amount

on line 3 of Listing 1.1, should be a number).

The aforementioned behavioural software defects can be detected during early

stages of development using behavioural types [15], or more specifically, session

1In Elixir, ‘:ok < 100’ evaluates to false, while in other languages (e.g., Scala), a similar
operation causes a compile-time issue.

5

Chapter 1. Introduction

types [15–17]. A (binary) session type is a protocol between two processes, which

defines the order and type of messages that are allowed (and expected) to be

transferred. Session types can be used to statically verify that concurrent programs

are free from communication mismatches or deadlocks, thus ascertaining that the

interaction between concurrent processes progresses safely. Moreover, since the

developer is encouraged to define the interaction explicitly, it results in software

that is structured better and easier to understand. This improves both the software

reliability and the development process [18]. Session types work by ensuring that

each sent message is received safely on the other end, and vice versa. Other than

the sending and receiving constructs, sessions types may contain branching, choice

and recursion. Furthermore, since messages may contain some payload, session

types describe both the label of the message and the payload types.

In practice, there have been many applications of session types for existing

languages that work either as static analysers (e.g., Go [19], Scala [20], OCaml [21,

22] and Rust [23, 24]), or as monitors, running at runtime (e.g., Scala [25],

Python [26], OCaml [27] and Erlang [28]). Our implementation takes the most

predominant approach (i.e., static analyser in the form of a type checker) and

creates a static type system for a subset of the Elixir language, to ensure protocol

adherence.

1.1 Aims and Objectives

The aim of this work is to improve the development of concurrent code, specifically

within the Elixir language. We can improve this by detecting common behavioural

issues that arise in message-passing systems, such as communication mismatches

and certain deadlocks. To do so, we need to be able to encode the implicit

communication protocols (e.g., Figure 1.1), as explicit protocols via session types,

ideally by integrating them in a natural way in existing Elixir programs (e.g.,

Listing 1.3), in a way that it is not disruptive to the developer. Using these session

6

Chapter 1. Introduction

types, we need a type system, backed by a formal foundation, that verifies the code

statically, i.e., at pre-deployment stages.

We can outline these aims in the following two objectives:

O1. Establish a formal foundation in the form of a type system. The type system

should be defined by the static typing rules and the operational semantics.

We also have to prove some properties related to the type system, including

session fidelity, which ascertains that the functions adhere to the session type

protocols precisely.

O2. Develop a proof-of-concept session type implementation in Elixir. This

practical type checker should, to a reasonable extent, mirror the formal

type system. The implementation should also integrate seamlessly within

an existing Elixir ecosystem, where it is the not intrusive to the developer’s

workflow. We should also analyse the applicability (and limitations) of our

tool through practical case studies.

1.2 Solution Overview

We revisit Listing 1.1 to see how session types could be integrated within the

existing code with minimal changes, to prevent behavioural issues. First, we will

formalise the session type, and then we insert it in the code. Then, using the

new additions, we should be able to detect behavioural issues (e.g., Listing 1.2) at

compile-time. We can infer the session type from the protocol in Figure 1.1, where

we take the buyer’s point-of-view and formalise it in a session type called auction,

as follows:

auction = !bid(number).&

?sold().end,

?higher(number).⊕

!quit().end,

!continue().auction

7

Chapter 1. Introduction

1 defmodule Auction do

2 use ElixirST

3 @session "auction = !bid(number).

4 &{?sold().end,

5 ?higher(number).

6 +{!quit().end,

7 !continue().auction}}"

8 @spec buyer(pid, number) :: atom

9 def buyer(auctioneer_pid, amount) do

10 send(auctioneer_pid, {:bid, amount})

11
12 receive do

13 {:sold} -> :yay

14 {:higher, value} -> decide(auctioneer_pid, amount, value)

15 end

16 end

17
18 @spec decide(pid, number, number) :: atom

19 defp decide(auctioneer_pid, amount, value) do

20 if value < 100 do

21 send(auctioneer_pid, {:continue})

22 buyer(auctioneer_pid, amount + 10)

23 else

24 send(auctioneer_pid, {:quit})

25 :ok

26 end

27 end

28
29 @dual "auction"

30 @spec auctioneer(pid, number) :: atom

31 def auctioneer(buyer_pid, min) do

32 ...

33 end

34 end

Listing 1.3: Auction system annotated with session types

The type auction states that the buyer process has to send (i.e., !) a label bid with

a payload of type number (i.e., !bid(number)). Then, it has to branch (i.e., &) in

two ways. If it receives (i.e., ?) a label sold, it has to terminate the session (i.e.,

end). If it receives a label higher with a payload of type number, then it can make

a choice (i.e., ⊕). It can either send a quit label, terminating the session, or else

it may send a continue label, recursing back to the beginning. The auctioneer

process should also follow Figure 1.1 from its point-of-view, e.g., by performing the

dual actions of auction, i.e., auction.

8

Chapter 1. Introduction

The next step is to insert the session types auction and auction in the existing

code. We use annotations to add session types. Annotations are commonly used

to add checks or information in Elixir code, e.g., the Dialyzer uses the @spec

annotation. The modified code is depicted in Listing 1.3, where we retrofit the

Auction module to use two new annotations: @session and @dual. In lines 3–7,

the buyer has to adhere to the auction session type (i.e., @session). In lines 31–

33, we defined another public function called auctioneer . By adding the @dual

annotation (line 29), the function auctioneer is forced to follow the dual session

type auction.

Our proposed (session) type system adds session types to a subset of Elixir,

serving multiple purposes. By having the interaction explicitly formalised as a

session type, one can glance at the session type and get a clearer idea of what

is happening, resulting in better code structure and fewer bugs. Moreover, by

typechecking the session-typed functions in a module, it enforces that each function

precisely follows the expected interaction, as defined by the protocol, flagging issues

at pre-deployment stages, e.g., the issues in Listing 1.2 will be caught earlier on if

session types are used.

This work is an extension of our paper [29] published in the AGERE 2021

workshop [30], where the session type system (and implementation) for Elixir, was

initially presented.

1.3 Document Outline

The next chapter (Chapter 2) provides some background information on type

systems and the Elixir language which will help set the context for the remaining

chapters. Chapter 3 provides the design of the (session) type system from a formal

aspect, covering the first part of Objective O1. Chapter 4 solidifies the foundation

of the formal system by proving some properties about our type system, including

session fidelity, addressing the remainder of Objective O1. Chapter 5 illustrates

9

Chapter 1. Introduction

the design and implementation of the type system, by creating type checker, called

ElixirST. This chapter covers the remaining objective, Objective O2. Due to the

nature of this work, the document structure is slight non-standard. Specifically, the

evaluation is split in two parts: Chapter 4 validates the formal system from a formal

perspective, while Chapter 5 validates it empirically by being implementing the

type system as an Elixir type checker. The related work is discussed in Chapter 6.

Finally, Chapter 7 concludes.

10

2. Background

We provide the necessary background to enable a better understanding of our

work. We then relegate the comparison of our work to the state-of-the-art

implementations in Chapter 6.

To this end, we introduce a simple type system, showing its importance to

detect compile-time errors. Then, the basics of labelled transition systems and

concurrency, used to model the execution of an Elixir program, are discussed.

Finally, we take a look at the Elixir language, an inherently dynamic and concurrent

programming language.

2.1 Type Systems

Consider a simple language with the following expressions:

e ::= not e | e1 + e2 | e1 < e2 | boolean | number

An expression e can take the form of a negation (i.e., not e) which inverts a

true to a false (and vice versa), addition of two expressions (i.e., e1 + e2) and the

comparison of two expressions (i.e., e1 < e2). An expression can also take the

form of a basic value, that includes booleans (i.e., true, false) and numbers. Using

11

Chapter 2. Background

this syntax, we can construct an infinite number of different programs, such as

5 + 2 < 10 (1)

not false (2)

not (8 < 2) (3)

1 + 1 < false (4)

Expressions (1–3) can be evaluated (i.e., reduced) fully, resulting in a value, e.g.,

consider expression (1):

5 + 2 < 10 → 7 < 10 → true

These are considered well-behaved expressions. On the other hand, we can have

expressions that get stuck when reducing, resulting in ill-behaved expressions, e.g.,

expression (4) reduces to the expression 2 < false which gets stuck:

1 + 1 < false → 2 < false 9

One way to find out if an expression is well- or ill-behaved is to evaluate the program

until it either reduces to a value (i.e., well-behaved), or else it stops due to some

error (i.e., ill-behaved). Unfortunately, finding errors after the program is deployed

can be expensive to fix and catastrophic if it crashes at a crucial time. Another

problem is that some programs may execute for a long time (or even forever), so

hoping that the program never crashes may not be an option. The ideal time to

spot errors is as early as possible, that is, before we even execute the program,

during compilation. This can be achieved via a static type system.

A type system flags issues related to the types of expressions, and decides if a

program is well- or ill-typed. If a program is well-typed and the type system is

sound, then we expect the program to be well-behaved, and thus it should progress

safely without crashing caused by type errors. Typically, programs tend to “just

12

Chapter 2. Background

work” once they pass the typechecker [31]. If a program is ill-typed, then it could

potentially manifest execution errors.

The language that we introduced earlier only deals with values having a boolean

or number types:

T ::= boolean | number

We will now add typing rules to each form of expression using the typing

judgement ` e : T , which says that an expression e has type T . Starting with

the basic values (referred to as b), any boolean literal must have type boolean (and

similarly, for numbers), e.g., true has type boolean and 4 has type number. This is

reflected in the typing rule [tLiteral] – it uses the type function which returns

the type of a literal, e.g., type(5) = number.

type(b) = T
[tLiteral] ` b : T

` e : boolean[tNot] ` not e : boolean

The next rule is [tNot] which states that a negation expression (not e), as well

as its sub-expression (e), must be booleans.

` e1 : number ` e2 : number
[tAdd] ` e1 + e2 : number

` e1 : number ` e2 : number
[tLess] ` e1 < e2 : boolean

The rule [tAdd], expects the addition expression (e1 + e2) to have type

number; moreover, it relies on the premises that both sub-expressions (e1 and e2)

must be numbers as well. The final rule, [tLess], typechecks the “less than”

operator, in which the final result will have a boolean type. It also depends on its

sub-expressions, which are expected to have type number.

13

Chapter 2. Background

Example 2.1. Consider expression (3), not (8 < 2). We will use the newly

defined typing rules to see if it typechecks (i.e., well-typed).

type(8) = number
[tLiteral]

` 8 : number

type(2) = number
[tLiteral]

` 2 : number
[tLess]

` 8 < 2 : boolean
[tNot]

` not (8 < 2) : boolean

Starting from the bottom, we use the rules [tNot], [tLess] and [tLiteral]. Since

all rules are used correctly, then the original expression is deemed well-typed with

respect to the final boolean type. Thus, it is expected to be well-behaved. �

Example 2.2. Consider another example (expression (4)) where we will examine

whether 1 + 1 < false is well-typed.

` 1 : number ` 1 : number
[tAdd]

` 1 + 1 : number

type(false) = boolean
[tLiteral]

` false : ??
[tLess]

` 1 + 1 < false : boolean

The first rule that we use is [tLess], which expects that the premises’ types to be

both numbers. A problem arises from the following rule, [tLiteral], which results

in a boolean instead of a number, resulting in a clash. Therefore, we can conclude

that this example fails typechecking, and thus may fail during execution. �

We have seen the static phase of processing in the language, which typechecks

a program with respect to some typing rules (i.e., type system). This, in turn,

decides if a program is well-formed. This well-formedness approximates whether

a language will execute with or without errors [32]. Note that, typechecking an

expression, in principle, is more efficient than computing the actual value, since it

approximates rather than performing the actual computations. The next phase is

execution, which is formally defined by the reduction or transition semantics (which

we introduce in Section 2.2). These rules specify the step-by-step way of executing

a program.

14

Chapter 2. Background

If we merge the static typing rules with the reduction semantics, we can decide

if a language is safe. Type safety dictates that “well-typed programs cannot go

wrong” [33]. This means that if a program typechecks, we expect it to execute

without issues. Type safety can be shown by proving two properties: preservation

and progress. Type preservation, can be achieved by showing that a well-typed

program remains well-typed after reduction.

Example 2.3. For e = not (8 < 2), in Example 2.1 we have shown that e is well-

typed, i.e., ` e : boolean. Assuming typical reduction semantics, we can reduce

e to some e′, e.g., not (8 < 2) → not false. Then, we expect that e′ remains

well-typed with respect to the same type. This holds if the language possesses the

preservation property. �

The other property is progress. Progress dictates that well-typed progress

cannot “get stuck”, meaning that all well-formed expressions must be able to reduce

to another expression, unless they are already a value.

Example 2.4. In the previous example, we have shown that e is well-typed and

it can reduce to another expression e′. By the progress property, e′ should also be

able to continue reducing until a value is reached:

not (8 < 2) → not false → true 9

When it reaches the true value, no more reductions are possible. Assuming

that the reduction trace is correct, then the progress property is satisfied in this

example. �

2.2 Labelled Transition System

The language and type system introduced in Section 2.1 will be expanded to handle

a practical subset of the Elixir language in Chapter 3. In order to observe how Elixir

15

Chapter 2. Background

programs evaluate, we define its transition semantics.

A program is made up of a term t (where t ∈ Terms) that transitions into

another term, producing an action α ∈ Act. The action α can be an internal or

external side-effect (e.g., sending a message). Transitions are denoted as t
α−→ t′,

where a term t transitions to t′, producing an action α. The transition t
α−→ t′

is a shorthand notations for the relation →⊆ (Terms × Act × Terms), where

t, t′ ∈ Terms and α ∈ Act.

Since we need to handle actions during transitions, we have to model how

a program evaluates using a transition semantics, defined in terms of a labelled

transition system (LTS) [34], as follows.

Definition 2.1 (Labelled Transition System). A labelled transition system (LTS)

is defined by a triple 〈Terms,Act,→〉, where

� Terms is the set of terms (or states) that our program may exist as;

� Act is the set of actions (or labels) that may be produced during a transition;

� →⊆ (Terms×Act×Terms) is a transition relation. �

In Section 3.5, we provide a complete LTS which models the runtime semantics

of an Elixir program. These simulate how Elixir programs execute in the Erlang

Virtual Machine.

2.3 Concurrency

Concurrency refers to units of execution, referred to as processes, which can run

independently, with other processes [1, 35]. Structuring programs in a concurrent

fashion may increase its complexity, however it has its benefits, e.g., if a concurrent

program is executed on a multi-core system, its processes can execute in parallel,

resulting in an increase in performance. A number of concurrency models have been

developed, which differ in how processes interact and share data between them. We

16

Chapter 2. Background

consider the shared state and message-passing concurrency, while focusing on the

latter.

2.3.1 Shared State Concurrency

Concurrency using a shared state works by having a common memory area which

is shared between multiple processes. These processes can typically read and write

simultaneously on the same memory, allowing for faster access when sharing data

between processes, since the original data can be accessed directly. This might

lead to concurrency issues, such as data races, where processes access data in an

inconsistent order. Constructs such as locks, mutexes and semaphores may be

used to prevent such issues [35], although they are not trivial, so applying them

incorrectly may lead to further issues. Shared state concurrency is widely used,

including in C threads [36], and CUDA threads which run on a Graphics Processing

Unit (GPU) [37].

2.3.2 Message-Passing Concurrency

Our focus is on concurrency via message-passing. In this model of concurrency,

processes typically have access to only their own memory space, so the only way

to interact with other processes is to send messages via a communication medium

(e.g., a channel). When messages are sent over a medium, the messages need to

be handled either in a synchronous or an asynchronous manner. In synchronous

message-passing, the process sending a message waits until the receiver is able to

handle the message being sent. The following messages may only be sent if the

preceding messages were received. In asynchronous message-passing, the process

sending the messages does not need to wait for the other processes to handle the

message.

We consider the two main paradigms in message-passing concurrency, which are

channel-based and the actor-based concurrency. Our work focuses on the latter,

17

Chapter 2. Background

message-passing using the actor model.

Channels

In channel-based concurrency, messages are transferred over a communication

channel. A channel is shared between different processes, which consists of two

ends: a transmitter and a receiver. A process sends messages in the receiver end,

whilst messages are received from the other end. Channels may allow synchronous

and asynchronous messaging. Channel-based concurrency is implemented in

modern languages, including Go [2] and Rust [5].

Actors

In message-passing concurrency, the actor model describes concurrent processes,

called actors, which share no memory and communicate by exchanging messages

directly. This model was first introduced by Hewitt et al. [38] and formalised

by Agha [39]. An actor is defined as follows:

Definition 2.2 (The Actor Model). An actor [39] is able to perform three actions:

� Change its state depending on the messages received;

� Send asynchronous messages to other actors;

� Create new actors. �

In an actor system, processes (or actors), can spawn other processes. Each

process executes in a separate environment and can only communicate with other

processes via message-passing. Processes can send asynchronous messages to other

processes using their unique address, called a process identifier (pid) which is

assigned to each process during creation. Then, messages are collected in the

process’ mailbox where the addressee can choose any message to read.

The actor model is becoming increasingly popular due to its advantages: it has

better fault tolerance, i.e., if one process crashes, it will not accidentally crash

18

Chapter 2. Background

another process, since processes do not share memory. For the same reason,

concurrent programs can easily scale depending on the number of CPU cores

available.

The actor model is used in several languages, including Scala, Swift, Erlang

and Elixir [6, 7, 9]. Our focus is on the Elixir language, which we introduce in the

following section (Section 2.4).

2.4 Elixir

The Elixir [7] programming language is a dynamically typed, functional language,

which offers message-passing concurrency via the actor model (Definition 2.2).

Elixir runs on the Erlang virtual machine (BEAM).

Elixir takes advantage of the Erlang ecosystem, which consists of the

Erlang language, the OTP (Open Telecom Platform) library and the BEAM

(Bogdan’s/Björn’s Erlang Abstract Machine) [40]. The Erlang language, as

well as OTP (which contains some standard Erlang libraries such as the

supervisor/gen server features), are compiled to bytecode that runs on the

BEAM. Similarly, Elixir is compiled to bytecode that runs on the same platform.

The BEAM can handle thousands of processes running concurrently.

Elixir was open-sourced by José Valim in 2012, in which the lanuage offers

additional powerful mechanisms when compared to Erlang. These include

metaprogramming and tools which help to streamline testing, documentation and

package publishing. Nowadays, Elixir has been gaining adoption in a multitude of

areas and companies, notably Discord, Pinterest and Apple [41, 42].

2.4.1 Functional Aspect

We explore some of the Elixir language aspects, starting from its sequential (i.e.,

functional) part, and then introduce some of its concurrency features.

19

Chapter 2. Background

Modules and Functions Elixir programs are typically structured as modules

containing a number of functions. These functions can be executed sequentially or

spawned in concurrent fashion.

1 defmodule Math do

2 @spec add(number, number) :: number

3 def add(a, b) do

4 a + b

5 end

6 end

In this example, we have a module called Math (line 1) which contains a single

public function add (line 3), that applies and returns the addition of two numbers.

For example, executing Math.add (1,2) returns 3. Public functions are defined

by the def keyword; these can be called from outside the defining module. On the

other hand, private functions are defined by the defp keyword and can only be

called from within the module.

Annotations In Elixir, it is common to decorate functions with annotations to

either add details or impose assertions. An example is shown in line 2, where the

@spec annotation is used to add type information to the function parameters and

return value. In this case, the add function takes two numbers as parameters and

returns another number. This information may be used to produce documentation

containing types, or used by the Dialyzer. The Dialyzer is a static analyser that

detects certain type errors using success typing [13], resulting in sound warnings

(i.e., no false warnings). When the Dialyzer (or Dialyxir1) is used in conjunction

with the @spec annotation, where the function parameters and return types are

explicitly stated, then the Dialyzer ensures that the function implementations

follow these specifications precisely. Annotations are commonly used in Elixir;

1Dialyzer is an Erlang tool, so we use Dialyxir (https://github.com/jeremyjh/dialyxir)
which ports the Dialyzer for the Elixir environment.

20

https://github.com/jeremyjh/dialyxir

Chapter 2. Background

another example includes Elixir’s doctest feature2 which uses the @doc annotation

to decorate functions with documentation, code examples and tests inside the

implementation itself. We will exploit annotations to add further assertions, which

we describe in Chapter 3.

Pattern Matching A powerful mechanism of Elixir is its pattern matching

operator, i.e., =. It compares the values on the right-hand side with the pattern on

the left-hand side. If the pattern contains values, then it checks for equality, and

if there are variables, it assigns them with a value.

7 x = 7

8 {4, y} = {4, :hello} # y = :hello

9 {5} = {9} # fails

In line 7 of this example, the variable x is assigned to a value 7, having type

number. Line 8 has a tuple containing a number 4 and an atom3 :hello. This

tuple is pattern matched with the left-hand side, where the first element checks

out (i.e., both 4) and the second element, y is assigned to a value :hello , which

has type atom. In the final line, we attempt to pattern match a tuple containing a

value 9 with the expected tuple containing a value 5. This action fails.

Control Flow In a programming language, you need to be able to make choices

and follow different paths. In Elixir, we can choose a different path using the case

construct; where, given a value, it pattern matches it with different options.

10 case var do

11 7 -> :seven

12 9 -> :nine

13 other -> other

14 end

2https://elixir-lang.org/getting-started/mix-otp/docs-tests-and-with.html#

doctests
3An atom is defined as a colon followed by a label (:l), e.g., :dog.

21

https://elixir-lang.org/getting-started/mix-otp/docs-tests-and-with.html#doctests
https://elixir-lang.org/getting-started/mix-otp/docs-tests-and-with.html#doctests

Chapter 2. Background

In the above example, we compare the value of the variable var with 7. If it

matches, then it returns :seven. If it fails, var is compared similarly to 9. Finally,

if none of the previous cases match, it will match with the last case, since the

variable other (line 13) does not have any preconditions.

Another common language feature is the if-clause (line 15), which works similar

to other languages.

15 if Integer.mod(z, 2) == 0 do

16 :even

17 end

2.4.2 Concurrent Aspect

We use the basic building blocks established from the functional part of Elixir

(Section 2.4.1) to take advantage of the BEAM’s concurrency features.

Spawn BEAM, and by extension, Elixir, observe the actor model (Definition 2.2),

so we should be able to spawn processes (or actors).

Taking as an example the previous add/2 function from the module Math , we

can use the spawn function provided by Elixir. It takes the module and function

names, along with the parameter values, or alternatively an anonymous function.

When executed, it immediately returns the pid value of the new spawned process.

18 pid = spawn(Math, :add, [1, 3])

By design, spawned processes are independent, therefore they do not share

memory with the other processes. So, having multiple processes is only useful if

they could interact, or exchange data with other processes.

Send and Receive A process can send data to another process’ pid using the

send operation. On the other hand, a dual process, can stop and wait to receive a

message using the receive construct. This works by picking each message from

the process’ mailbox and checks for validity via pattern matching, akin to how the

22

Chapter 2. Background

case construct works. This receive operation is blocking and will only release after

a valid message is received, or some timeout is reached.

19 # process 1

20 send(pid2, :some_value)

21 # ...

22 # process 2

23 receive do

24 value ->

25 IO.puts("Received #{value}")

26 end

In this example, the first process (line 20) sends a message to some pid , and

the other process (line 23) waits to receive a message, outputting its value when

received.

In more advanced concurrent implementations, abstraction features from the

OTP library are used; these help in reusing similar patterns. For example, the

gen server abstraction manages the server in client-server relationship; and the

supervisor abstraction helps to form a supervision tree, managing the creation and

death of child processes, following Erlang’s let it crash philosophy, which handles

errors by letting processes crash. These more advanced abstractions are beyond

the scope of this project; we will only consider the send-receive pattern.

2.4.3 Present Validations

When Elixir code is compiled, the compiler only validates the sequential part of

the code. For example, it ensures that the correct syntax is used (e.g., each open

bracket has a matching close bracket), or that function calls are allowed from the

present module. Considering that Elixir is dynamically typed, typechecking is

carried out at runtime, not at compile-time. So, some (partially) valid programs,

such as:

if condition do

:ok

else

:foo + 1

end

23

Chapter 2. Background

despite being accepted by the compiler, may not always run correctly. For instance,

if the variable condition evaluates to true, the program runs without issues, but

if it evaluates to false, then the program reaches a runtime error. Some tools,

such as the Dialyzer, can statically analyse the code to catch further errors. The

Dialyzer is one example, which analyses the code at compile-time to catch type

errors. In Section 2.4.1 we saw how the Dialyzer may be used to ascertain that the

function parameters and return type conform to the specifications dictated by the

@spec annotation.

Although the sequential part of the code is thoroughly analysed, the concurrent

part of the code is not checked by the present Elixir compiler. This may leave

vulnerabilities in the code, where behavioural errors (described in Chapter 1) such

as deadlocks and communication mismatches, may cause issues at runtime. In this

study we build a static type checker that analyses (a subset of) the Elixir language,

with a focus on its concurrency features.

2.5 Conclusion

In this chapter we laid the foundations of how type systems interact with a

simple language and introduced how languages may evaluate via labelled transition

systems. We also introduced the concept of concurrency, and more specifically, the

actor model, which underpins Elixir’s concurrent aspect. In the following chapters,

we will create and formalise a new session typing system, and provide a proof-of-

concept implementation for Elixir.

24

3. A Formal Analysis

In this chapter we introduce a core subset of the Elixir language. Following this,

we provide a formal foundation for Elixir programs by constructing a (session)

type system and an operational semantics. The type system is then validated from

a formal perspective in Chapter 4, and implemented as a static type checker in

Chapter 5.

3.1 Outline of the Approach

Elixir programs are composed of several public and private functions organised in

modules, as shown in the example in Figure 3.1. Functions can be considered the

basic unit of decomposition in Elixir programs, since difference tasks can be split

in different functions. A module may expose some of these functions to external

entities by defining them as public functions. These public functions provide

the only entry points for a module. Internally, these public functions may split

their tasks among private functions, which exist inside a module and can only be

referenced from within the same module. For instance, Figure 3.1 depicts a module

m which contains several public (e.g., f1) and private functions (e.g., g1). E.g., the

public function f1 splits its work by calling other private functions, i.e., g1 and gj.

Public functions can be spawned to create processes, where they can

communicate with other processes via message-passing. In Figure 3.1, the public

25

Chapter 3. A Formal Analysis

g1

g2

...

gj

f1

...

fn

Module m

client1

clientk

...

S1 S1

Sn Sn

private public

Figure 3.1: An Elixir module consisting of public and private functions, interacting
with client processes

function f1 is spawned, creating a process which interacts with a client process.

Processes tend to communicate by exchanging messages in a structured but implicit

manner. This structure, or protocol, is presently being assumed by both interacting

parties, since Elixir does not provide a way to explicitly define these protocols

(and enforce them). This forces the processes to ‘guess’ which messages are going

to be received or which messages are expected to be sent, which could result in

behavioural issues explained in Chapter 1.

Our design addresses this shortcoming, using a twofold approach:

1. It provides a way to attach a protocol (using session types) to each public

function, thus defining the structure of the interaction explicitly. This allows

the interacting processes to know, rather than guess, how the interaction will

progress. For example, the function f1 in Figure 3.1 interacts with a client

process following a certain protocol, which we define explicitly as S1. This

allows other interacting processes (e.g., client1) to safely interacting with f1 if

they follow a protocol compatible with S1 (e.g., S1).

2. These protocols are then used to enforce that the implementations of the public

26

Chapter 3. A Formal Analysis

functions follow them precisely. This is achieved by building a type system

that statically typechecks each public function against a session type, thus

flagging issues at pre-deployment stages. For example, the public function f1

(Figure 3.1) is typechecked statically against the protocol S1, ascertaining that

its implementation is faithful to the interactions defined by the protocol S1.

Furthermore, this is not a trivial approach, since only public functions know

which session types to follow (since they are explicitly defined). In turn, these

public functions may call private functions which do not have an explicit session

type. Despite this, these private functions still have to follow the (fragmented)

protocol inherited from the callee function.

3.2 Elixir Syntax

We introduce the syntax for a fragment of the Elixir language. This syntax is shown

in Figures 3.2 and 3.3, and features Elixir modules, functions, terms, expressions,

types and the new annotations. We let variables x, y range over variable names

and symbol l ranges over labels. Variable m denotes module names and f denotes

function names.

3.2.1 Session Types

As motivated in Chapter 1, we design a static type system which applies session

types to a fragment of the Elixir language. This type system assumes the standard

expression types (Figure 3.2), including basic types, such as boolean, number, atom

and pid, and inductively defined types, such as tuples ({T1, . . . , Tn}) and lists

([T]).

Remark. Throughout this work, we use a shorthand notation where T̃ (i.e.,

tilde over symbol) stands for the possibly empty sequence T1, . . . , Tn. Other

(meta)variables including p, P , D, v, x and e, also follow the same convention,

e.g., x̃ = x1, . . . , xn and p̃ = p1, . . . , pn. �

27

Chapter 3. A Formal Analysis

Session types S ::= &
{

?li
(
T̃i
)
.Si
}
i∈I Branch

| ⊕
{

!li
(
T̃i
)
.Si
}
i∈I Choice

| rec X . S Recursion

| X Recursion variable

| end Terminate

Expression types T ::= boolean | number | atom | pid

| {T1, . . . , Tn} | [T]

Figure 3.2: Types

Expression types, albeit dynamically checked, already exist in the present Elixir

language. Our type system extends these types to new types, called session types,

which will be used to statically check that the message-passing interaction complies

to a pre-defined protocol. Session types are made up of the branching, choice,

recursion and termination constructs, as shown in Figure 3.2.

The branching session type, &
{

?li
(
T̃i
)
.Si
}
i∈I , dictates that a message is

received, containing any one of the labels li. This message must be accompanied by

a payload of type T̃i. The interaction then progresses as Si. Dual to the branching

type, we have the choice type, ⊕
{

!li
(
T̃i
)
.Si
}
i∈I . It specifies that a message labelled

li, along with a payload of type T̃i, can be sent. The interaction progresses as Si.

The crucial difference between the branching and choice types is where the choice

of message lies, i.e., in the branching session type, an external party decides which

message to send, so the receiving party must handle all available branches. Dually,

the choice type offers an internal option, where at least one of the message choices

may be chosen. Note that, the labels in the branching and choice types need to be

pairwise distinct, i.e., two messages that have the same label cannot be sent (or

received) at one time. Moreover, for clarity, the symbols & and ⊕ can be omitted

28

Chapter 3. A Formal Analysis

for singleton options, e.g., ⊕
{

!A(number).S1

}
is equivalent to !A(number).S1.

Session types can also take the form of a recursion construct, rec X . S, where

the recursion variable X is bound inside the session type S. For recursion, we take

the more liberal approach, i.e., equi-recursion [31]. This means that the recursive

type (rec X . S) and its unfolding (S [rec X . S/X]) are deemed equivalent, and thus can

be used interchangeably. The remaining form is the termination session type, end.

It terminates the session and prevents any further message exchanges. For brevity,

end may be omitted, e.g. ?B() is equivalent to ?B().end.

If a process following session type S interacts with another process following

the dual session type of S, then it is guaranteed that their interaction progresses

safely (i.e., no communication mismatches or deadlocks). The dual session type of

S, written as S, describes the dual actions depicted by S (Definition 3.1).

Definition 3.1 (Duality). The session type S is the dual of S:

&
{

?li
(
T̃i
)
.Si
}
i∈I = ⊕

{
!li
(
T̃i
)
.Si
}
i∈I rec X . S = rec X . S

⊕
{

!li
(
T̃i
)
.Si
}
i∈I = &

{
?li
(
T̃i
)
.Si
}
i∈I X = X end = end �

Example 3.1. Consider a server process that follows the session type S =

&
{

?l1(), ?l2(), ?l3(), ?l4()
}

, i.e., the process must receive a message labelled l1,

l2, l3 or l4. This server can interact safely with a client process, if the client

sends one of the labels l1, l2, l3 or l4. This is depicted formally as the protocol

S = ⊕
{

!l1(), !l2(), !l3(), !l4()
}

. This session type S is the dual session type of S.

However, the client process may also interact safely if it decides to only send labels

l1 or l3, i.e., it follows the session type ⊕
{

!l1(), !l3()
}

which is smaller than the

dual session type S. This is possible through session type subtyping [43], which

goes beyond our scope. �

Example 3.2. Recall the annotated auction example from Listing 1.3. The

interaction between the buyer and the auctioneer can progress safely if both parties

29

Chapter 3. A Formal Analysis

follow the protocol depicted in Figure 1.1. We established that protocol from the

buyer’s point of view is called auction:

auction = !bid(number).&

?sold().end,

?higher(number).⊕

!quit().end,

!continue().auction

This auction session type starts with a singleton choice, containing a label bid and

a payload of type number (i.e., T̃ = number). Then, it can branch (&) to either

labels sold or higher. If it branches to the latter, it can then make an internal

choice (⊕) to send the label quit or continue. From the opposite side of the

interaction, the auctioneer follows the dual session type of auction, called auction:

auction = ?bid(number).⊕

!sold().end,

!higher(number).&

?quit().end,

?continue().auction

In auction, the auctioneer has to first receive a label bid with a payload of type

number, and then it has to make a choice. It can either accept the bid, sending a

sold label and then terminating. Or else, it can send the new higher bid amount

(i.e., !higher(number)) before either terminating (i.e., ?quit()) or continuing the

auction process (i.e., ?continue().auction). �

3.2.2 Modules and Functions

The preceding expression and session types are used within Elixir programs, as

defined by the syntax in Figure 3.3. As shown in Figure 3.1, Elixir programs

are organised as modules, i.e., defmodule m do P̃ D̃ end. Modules are defined

by their name, m, and contain a sequence of public D̃ and private P̃ functions.1

Public functions, def f(y, x̃) do t end, are defined by the def keyword, and can

1Although we group public and private functions together, their order is irrelevant.

30

Chapter 3. A Formal Analysis

Module M ::= defmodule m do P̃ D̃ end

Public function D ::= K B def f(y, x̃) do t end

Private function P ::= B defp f(y, x̃) do t end

Type ann. B ::= @spec f
(
T̃
)

:: T

Session ann. K ::= @session “X = S”

| @dual “X”

Basic values b ::= boolean | number | atom | pid | []

Values v ::= b | [v1 | v2] | {v1, . . . , vn}
Identifiers w ::= b | x

Patterns p ::= w | [w1 | w2] | {w1, . . . , wn}
Terms t ::= e Expression

| x = t1; t2 Let statement

| send (w, {:l, e1, . . . , en}) Send

| receive do({
:li, p

1
i , . . . , p

n
i

}
→ ti

)
i∈Iend

Receive

| f (w, e1, . . . , en) Function call

| case e do (pi → ti)i∈Iend Case

Expressions e ::= w Identifiers

| not e | e1 � e2 Operations

| [e1 | e2] | {e1, . . . , en} Lists & tuples

Operators � ::= < | > | <= | >= | == | !=
| + | − | ∗ | / | and | or

Figure 3.3: Elixir syntax

31

Chapter 3. A Formal Analysis

be called from any module. In contrast, private functions, defp f(y, x̃) do t end,

are defined by the defp keyword, and can only be called from within the defining

module. Functions are defined by their name, f , and their body, t. They are

also parametrised by a sequence of unique variables, y, x̃, where x̃ = x1, . . . , xn.

The total number of parameters is called the arity. The first parameter, y, is

reserved for the variable containing the pid of the dual process. For instance,

the public function buyer from Listing 1.1 has arity 2, and the first parameter

(auctioneer pid) represents the pid of the dual process (auctioneer). Moreover, a

module can only contain functions with unique names, unless the arity is different.

Functions serve different purposes in our design: public functions are used to spawn

individual processes; and private functions are used as a looping mechanism, since

in Elixir, looping is typically done via recursion.

Elixir is a dynamically typed language, so the variables types are analysed at

runtime. On the other hand, since we are building a static type checker, we cannot

have variables with unknown types at compile-time. Therefore, we decorate all

unknown variables in function definitions with their types. To achieve this, we

exploit the @spec annotation, provided by the Dialyzer, to add type specifications

preceding all function definitions. This annotation takes the form of f(T̃) :: T ,

which describes the parameter types (T̃) and the return type (T) of the function

f .

The most crucial part of this type system is the analysis of the functions’

(concurrent) behaviour with respect to some protocol. To be able to do this,

we decorate public functions with the session types defined in Figure 3.2. We can

annotate public functions directly using @session “X = S”, or indirectly using

the dual session type, @dual “X”. The notation X = S is shorthand for rec X . S.

Moreover, this notation also allows for the session type S, to be assigned a label X,

and thus can be referenced by @dual annotations defined within the same module.

32

Chapter 3. A Formal Analysis

3.2.3 Terms and Expressions

The body of a function is made up of some term, t. Terms can take the form of

an expression, a let statement, a send or receive construct, a case statement or a

function call, as defined in Figure 3.3.

The let statement, x = t1; t2, evaluates term t1, binding its result to x in t2,

and then it evaluates t2. We can write t1; t2, as syntactic sugar for x = t1; t2 (given

that x is not used in t2); the semicolon (;) can be omitted if t1 and t2 are on different

lines. The send statement, send (x, {:l, e1, . . . , en}), allows a process to send a

message to the pid stored in the variable x, containing a message {:l, e1, . . . , en},

where :l is the label.

Remark. The contents of the messages, i.e., the label and the payloads, are

unrolled into a tuple, with the first element, a literal atom, acting as the label,

followed by the payloads. For example, consider the session type !bid(number),

where a message containing a label bid, along with a payload of type number,

needs to be sent. A valid Elixir snippet that observes this protocol would be:

send(pid, {:bid, 500}) , where pid contains the dual pid, and {:bid, 500}

is the labelled message being transferred. �

The receive construct, receive do ({:li, p1
i , . . . , p

n
i } → ti)i∈Iend, allows a

process to receive a message, by blocking until a valid message is fetched from

the process’ mailbox. A message is chosen if its label matches with one of the

labels :li, and also the payloads must correspond to the patterns p1
i , . . . , p

n
i .

Then it continues executing as ti. Note that patterns, p (defined in Figure 3.3),

can take the form of a variable (e.g., x), a basic value (e.g., false), a tuple (e.g.,

{x}) or a list (e.g. [x | y], where x is the head and y is the tail of the list).

The case statement, case e do (pi → ti)i∈Iend, evaluates some expression e and

matches the result with the possible patterns pi, continuing as ti. We assume that

the union of all patterns (p0, . . . , pi, . . . , pn) cover all possible values of e. For

instance, if e has type list (i.e., [T]), then two possible cases of pi need to be []

33

Chapter 3. A Formal Analysis

and [x | y]. Similarly, if the type of e is a number and the first pattern p1 is 4, then

we assume that one of the remaining patterns, pi, contains a catch-all variable x,

thus accepting any number that e might evaluate to (since e could evaluate to any

number, not just 4).

Finally, terms can take the form of an expression, e (refer to Figure 3.3). An

expression can be a variable (e.g., x), a basic value (i.e., boolean, number, atom,

pid), a negation operation (i.e., not e), a binary operation, a list or a tuple. Binary

operations include comparison operations (<, >, <=, >=, ==, ! =), arithmetic

operations (+, −, ∗, /) and boolean operations (and, or). Lists contain a sequence

of elements having a uniform type, e.g., [1, 5, 10] , while tuples may contain a

sequence of heterogeneous elements, e.g., {1, :hello, true}.

Given some term t, we can compute the free variables using the function fv(t).

Similarly, we can get a set of bound variables using the function bv(t). The full

definitions can be found in Appendix A. Using the fv function, we can define closed

and open terms, as follows.

Definition 3.2 (Closed and Open Terms). A term t is closed whenever t does

not contain any free variables, i.e., fv(t) = ∅. Dually, a term t is open whenever

fv(t) 6= ∅. �

Example 3.3. Consider the following function definition (successor), which takes

a pid (y) and a number (num) as parameters. This function increments num and

sends the value as a labelled message to pid y:

def successor(y, num) do

x = num + 1

send(y, {:val, x})

end

t

When we compute the free variables of the function’s body (t), using the fv

function, we get fv(t) = {num, y}, since num and y are not bound inside the body.

34

Chapter 3. A Formal Analysis

Thus, the body t is considered an open term.

On the other hand, we can substitute the free variables with some values, e.g.,

x = 5 + 1

send(ι, {:val, x})
t′

In this case t′ has no free variables, i.e., fv(t′) = ∅, so t′ is said to be a closed

term. Moreover, in the first line, x becomes bound to the result of 1 + 6 by the let

statement, so bv(t′) = {x}. �

3.3 Session Typing

In Figure 3.1, we presented how Elixir programs can be structured, which consist

of modules made up of several functions. Moreover, we introduce a new approach

of how we can discipline the side-effects (i.e., messages), using explicit protocols,

called session types. In this section, we build a session typing system that statically

verifies that these protocols are being adhered to. To achieve this, we typecheck

the modules and their functions. We analyse functions by typechecking their

body, which in turn is made up of terms and expressions. We take a bottom-

up approach, where we first present the expression typing rules (Section 3.3.1),

and move towards the term typing rules (Section 3.3.3), and finally, the module

typing rules (Section 3.3.4). This type system uses a variable binding environment:

Γ ::= ∅ | Γ, x : T

The variable binding environment, Γ, maps (data) variables to their basic types

(x:T). We write dom(Γ) to dictate the set of variables mapped by Γ, and Γ, x:T to

extend Γ with the new mapping x:T , where x /∈ dom(Γ). The empty environment

is represented by ∅.

35

Chapter 3. A Formal Analysis

Γ `exp e : T ∀i ∈ 1..n Γ `exp ei : Ti
[tTuple]

Γ `exp {e1, . . . , en} : {T1, , . . . , Tn}

type(b) = T b 6= []
[tLiteral]

Γ `exp b : T

Γ (x) = T
[tVariable]

Γ `exp x : T

Γ `exp e1 : T Γ `exp e2 : [T]
[tList]

Γ `exp [e1 | e2] : [T]
[tEList]

Γ `exp [] : [T]

Γ `exp e1 : number Γ `exp e2 : number � ∈ {+, −, ∗, /}
[tArithmetic]

Γ `exp e1 � e2 : number

Γ `exp e1 : boolean Γ `exp e2 : boolean � ∈ {and, or}
[tBoolean]

Γ `exp e1 � e2 : boolean

� ∈ {<, >, <=, >=, ==, !=}
Γ `exp e1 : T Γ `exp e2 : T

[tComparisons]
Γ `exp e1 � e2 : boolean

Γ `exp e : boolean
[tNot]

Γ `exp not e : boolean

Figure 3.4: Expression typing

3.3.1 Expression Typing

The expression typing rules are used to analyse expressions, e, as defined in

Figure 3.3. These rules, adapted from [44], are defined in Figure 3.4, where they

use the judgement:

Γ `exp e : T

variable binding environment

expression

expression type

This judgement states, that “expression e has type T , subject to the variable

binding environment Γ.” From Figure 3.4, the [tLiteral] rule analyses basic

36

Chapter 3. A Formal Analysis

values by comparing their type to the expected type. Their type is obtained using

the function type, e.g., type(5) = number.

Definition 3.3 (Type).

type(boolean) = boolean type(number) = number

type(atom) = atom type(ι) = pid, where ι is a pid instance �

Rule [tVariable] checks that variables have the correct types, as assumed in

the variable binding environment Γ. Rule [tTuple] inspects tuples, by checking

that each element in the tuple has the correct type, e.g., the type of {2, true} should

be {number, boolean}. Rules [tEList] and [tList] check the types of empty and

non-empty lists, respectively. Rule [tEList] is the only polymorphic rule, meaning

that the empty list matches with any list type, i.e., [] has type [T] for any T .

Rules [tArithmetic], [tBoolean] and [tComparisons] analyse the types

of binary operations. For instance, [tArithmetic] ensures the expressions in

arithmetic operations have type number. Lastly, [tNot] checks the type of the

negation operation.

3.3.2 Pattern Typing

In the receive construct (Figure 3.3), messages are compared to the patterns in

each branch. When one pattern matches, the values from the messages are bound

to new variables. Similarly, the case construct may also produce new variables as

a result of pattern matching. These new variables are mapped to their types using

the pattern typing rules, shown in Figure 3.5, using the judgement

`wpat p : T B Γ

new variable binding environmentpattern

expression typedual pid

which is read as, “pattern p is matched to type T , where it produces new variables

37

Chapter 3. A Formal Analysis

`wpat p : T B Γ

∅ `exp b : T b 6= []
[tpLiteral]

`wpat b : T B ∅
x 6= w

[tpVariable] `wpat x : T B x : T

∀i ∈ 1..n `wpat wi : Ti B Γi
[tpTuple]

`wpat {w1, . . . , wn} : {T1, . . . , Tn} B Γ1, . . . , Γn

`wpat w1 : T B Γ1 `wpat w2 : [T] B Γ2
[tpList]

`wpat [w1 | w2] : [T] B Γ1,Γ2

[tpEList]
`wpat [] : [T] B ∅

Figure 3.5: Pattern typing

and their types are collected Γ; under the assumption that the variable containing

the dual pid , w, remains unchanged.”

Rule [tpLiteral] acts as a pattern checking mechanism, ensuring that the

literals match the value obtained. Rule [tpVariable] introduces new (and unique)

variables from the pattern. It also prevents variables from clashing with the dual

pid identifier w. Rule [tpTuple] is used pattern match tuples, and rules [tpEList]

and [tpList] are used to pattern match lists. Note that, new variable mappings

are joined together using Γ1,Γ2, where their domains must be distinct.

Example 3.4. From the auction example (Listing 1.3), recall this snippet, where

we introduce a new variable called value in one of the branches:

receive do

...

{:higher, value} -> ...

end

From the session type auction, we can infer that this branch matches with the

session type ?higher(number). Therefore, we can apply the axiom [tpVariable],

as follows:

`wpat value : number B value : number

This results in a new environment, binding the variable value to type number. �

38

Chapter 3. A Formal Analysis

3.3.3 Term Typing

Expressions are used within terms, as defined in Figure 3.3. In this section, we

typecheck these terms with respect to their base types, along with the added session

types. In addition to the variable binding environment (Γ) defined in Section 3.3,

the type system uses two further environments:

session typing env. ∆ ::= ∅ | ∆, f/n : S

function inf. env. Σ ::= ∅ | Σ, f/n :

params = x̃, param types = T̃ ,

body = t, return type = T, dual = y

The session typing environment, ∆, maps function names and arity to their session

type (f/n:S). Similar to Γ, we can extend ∆, or obtain its domain (i.e., dom(∆)).

If a function f/n has a known session type, then it can be found in ∆, i.e.,

f/n ∈ dom(∆). Each module has a function information environment, Σ, that

holds information related to the function definitions – once created, Σ remains

static. For a function f , with arity n, Σ(f/n) returns the tail list of parameters

(params) and their types (param types), the function’s body (body), and its return

type (return type). It also returns the variable name that holds the dual process’

pid (dual), which we reserved as the first parameter in Figure 3.3.

Definition 3.4 (Well-Formedness of Σ). The function information environment,

Σ, is well-formed iff all functions that are mapped in this environment (f/n ∈

dom(Σ)) observe the following condition:

fv
(
Σ(f/n).body

)
\
(
Σ(f/n).params ∪ {Σ(f/n).dual}

)
= ∅

Informally, this condition states that the body of function f/n is closed

(Definition 3.2), if all of its parameters (i.e., params and dual) are bound. �

39

Chapter 3. A Formal Analysis

Example 3.5. Recall the function successor from Example 3.3:

def successor(y, num) do

x = num + 1

send(y, {:val, x})

end

t

We saw that the only free variables in the body t were y and num, i.e., fv(t) =

{y, num}, given that t = Σ(successor/2).body. The free variables, y and num, are

equivalent to the variables stored in dual and params, respectively. Thus, when

we bind y and num to a value, the function’s body becomes closed (i.e., fv(t) = ∅).

This pattern is enforced by the Well-Formedness of Σ Definition. �

Figure 3.6 presents the syntax-directed term typing rules, where a rule is

assigned to each possible term t. The rules use a similar notation formulated

by Harvey et al. [45]. The term typing rules are based on the following term typing

judgement:

∆ · Γ `wΣ S B t : T C S ′

environmentsvariable binding&session typing

session typesresidual&initialdual pid

term expression type

This judgement states that “the term t can produce a value of type T after

following an interaction protocol starting from the initial session type S up to the

residual session type S ′, while interacting with a dual process with pid identifier w.

This typing is valid under some session typing environment ∆, variable binding

environment Γ and function information environment Σ.” Since the function

information environment Σ is static for the whole module (and by extension, for

all sub-terms), it is left implicit in the rules of Figure 3.6.

40

Chapter 3. A Formal Analysis

∆ · Γ `wΣ S B t : T C S ′

∆ · Γ `w S B t1 : T ′ C S ′′ ∆ · (Γ, x : T ′) `w S ′′ B t2 : T C S ′ x 6= w
[tLet]

∆ · Γ `w S B x = t1; t2 : T C S ′

∀i ∈ I ∀j ∈ 1..n

`wpat p
j
i : T ji B Γji ∆ ·

(
Γ,Γ1

i , . . . , Γni
)
`w Si B ti : T C S ′

[tBranch]
∆ · Γ `w &

{
?li
(
T̃i
)
.Si
}
i∈I B receive do ({:li, p̃i} → ti)i∈Iend : T C S ′

∃i ∈ I l = li ∀j ∈ 1..n ·
{

Γ `exp ej : T ji
}

[tChoice]
∆ · Γ `w ⊕

{
!li
(
T̃i
)
.Si
}
i∈I B send (w, {:l, e1, . . . , en}) : {atom, T 1

i , . . . , T
n
i }C Si

∆ (f/n) = S ∀i ∈ 2..n · {Γ `exp ei : Ti}
Σ (f/n) = Ω Ω.return type = T Ω.param types = T̃

[tRecKnownCall]
∆ · Γ `w S B f (w, e2, . . . , en) : T C end

Σ (f/n) = Ω f/n /∈ dom(∆) Ω.dual = y

Ω.params = x̃ Ω.param type = T̃ Ω.body = t

Ω.return type = T ∀i ∈ 2..n · {Γ `exp ei : Ti}
(∆, f/n : S) ·

(
Γ, y : pid, x̃ : T̃

)
`y S B t : T C S ′

[tRecUnknownCall]
∆ · Γ `w S B f (w, e2, . . . , en) : T C S ′

Γ `exp e : U

∀i ∈ I `wpat pi : U B Γ′i ∆ · (Γ,Γ′i) `w S B ti : T C S ′
[tCase]

∆ · Γ `w S B case e do (pi → ti)i∈Iend : T C S ′

Γ `exp e : T
[tExpression]

∆ · Γ `w S B e : T C S

Figure 3.6: Term typing

41

Chapter 3. A Formal Analysis

Session types can describe sending and receiving actions, along with recursion

and termination. The sending and receiving actions are covered by the [tBranch]

and [tChoice] rules. The recursive parts (via function calls), are inspected using

rules [tRecUnknownCall] and [tRecKnownCall].

Consider the most complex rule, [tBranch], which typechecks the receive

construct. Rule [tBranch] expects an initial branching session type &
{
. . .
}

,

where it is compared to a receive construct. Each branch in the session type

must match with a corresponding branch in the receive construct, where both the

labels (li) and payload types (T̃i) must match. The types within each receive

branch are computed using the pattern typing judgement (`wpat p : T B Γ), defined

in Figure 3.5 (see Example 3.4). Each receive branch is then checked recursively

using the term typing rules. Each branch produces a value having common type

T and a common residual session type S ′ – this makes it possible to utilise the

fork-join pattern described in Section 5.3.

The send statement is typechecked using the [tChoice] rule. This rule expects

an initial choice session type ⊕
{
. . .
}

, which is then compared to the message in the

send statement. The label inside the message must match with a single label (li)

offered by the choice session type. The payloads of the message must also match

with the types expected in the session type (T̃i). The types of the payloads are

computed using the expression typing rules, described in Figure 3.4. Furthermore,

the send statement also includes the pid of the addressee of the message – this

pid must match with the dual pid (w) which is imposed from the rule itself. This

ensures that messages are only sent to the correct addressee.

Remark. We use a notion of a function with a ‘known’ session type, or an

‘unknown’ session type. Concretely, a function f/n has a known session type

if f/n is mapped to a session type S in the session typing environment ∆, i.e.,

f/n ∈ dom(∆) or f/n : S ∈ ∆. Conversely, a function f/n has an unknown

session type, if this function does not exists in the session typing environment, i.e.,

f/n /∈ dom(∆). �

42

Chapter 3. A Formal Analysis

Function calls are typechecked using the rules [tRecKnownCall] and

[tRecUnknownCall], depending whether the functions have a known or

unknown session type, respectively. For instance, public functions always have

a known session type, since they are decorated explicitly using the @session or

@dual annotations, as define in Figure 3.3.

In case of a function f/n with a known session type, the rule

[tRecKnownCall] verifies that the expected initial session type is equivalent

to the function’s known session type. Its session type is obtained from the session

typing environment, i.e., ∆ (f/n) = S. Without typechecking the function’s body,

this rule ensures that the parameters have the correct types (using the expression

typing rules), and it ascertains that this session type S is fully consumed, thus the

residual type becomes end.

A function, f/n, with an unknown session type, is inspected using the

[tRecUnknownCall] rule. This rule ensures that the parameters have the

correct types, and then it analyses the function’s body (obtained from Σ)

with respect to a new session type. This session type is inherited from the

expected initial session type, since the function being called must fully exhaust

the remaining session type. Furthermore, this session type is appended to the

session typing environment ∆ for future reference, i.e., ∆′ = (∆, f/n:S). Since

∆′ now contains the session type of f/n, should f/n be is recursively called again

(within the same call chain), rule [tRecKnownCall] will take precedence over

[tRecUnknownCall], thus bypassing the need to re-analyse its body.

The remaining three rules analyse the functional aspect of the code. Rule

[tLet], typechecks a let statement, x = t1; t2, where t1 has an initial session type

S and a residual session type S ′, and t2 has an initial session type is S ′ and a

residual session type S ′′. The overall session type progresses from S to S ′.

Rule [tCase] typechecks a case construct, by first analysing the type of the

expression being matched, and then obtains the patterns in each branch using

the pattern typing rules. Similar to [tBranch], all cases need to end up with a

43

Chapter 3. A Formal Analysis

common type T and residual session type S ′.

Finally, rule [tExpression] analyses expressions using the expression typing

rules. Since expressions produce no side-effects, the residual session type remains

the same as the initial session type.

3.3.4 Module Typing

Session typechecking is initiated by analysing an Elixir module (M), using the

judgement `M . A module is typechecked by inspecting each of its public functions,

ascertaining that they correspond and fully consume some pre-defined session type

– this is depicted in the [tModule] rule:

∆ = sessions(D̃) Σ = details(P̃ D̃)

∀f/n ∈ functions(D̃) ·

∆(f/n) = S Σ (f/n) = Ω

Ω.params = x̃ Ω.param types = T̃

Ω.body = t Ω.return type = T Ω.dual = y

∆ ·
(
y : pid, x̃ : T̃

)
`yΣ S B t : T C end

[tModule]
` defmodule m do P̃ D̃ end

The [tModule] rule uses three helper functions: functions, sessions and

details (defined in pages 117–118). The function functions(D̃) returns a list of

all function names (and arity) of the public functions (D̃) to be checked individually.

The function sessions(D̃) obtains a mapping of all the public functions to their

expected session types stored in ∆. This ensures that when a function f with

arity n executes, it adheres to the session type associated with it using either

the @session or @dual annotations. The helper function details populates the

function information environment (Σ) with details about all the public (D̃) and

private functions (P̃) within the module.

After getting the information required from these three auxiliary functions,

[tModule] then inspects public function individually (which is highlighted),

44

Chapter 3. A Formal Analysis

using the term typing judgement explained in the preceding section (Section 3.3.3).

The judgement compares the public functions’ body to their session type, ensuring

that the session types are adhered to precisely.

When each public function f/n is analysed, its function information

environment contains information about all functions within a module; this allows

functions to call any other function within the same module.

Moreover, the initial session typing environment ∆ is set to contains the session

types for all annotated (public) functions. This allows calls to public functions to be

typechecked once at [tModule] and then be skipped whenever they are call again,

using the rule [tRecKnownCall]. On the other hand, calls to private functions,

need to be typechecked using the [tRecUnknownCall], where they are assigned

a session type, extending ∆. Then, when they are recursively called again, they

subscribe to the session type binding that was initially assigned, following the rule

[tRecKnownCall] as explained in Section 3.3.3.

3.4 Typing in Action

We reconsider the auction example from Chapter 1 and typecheck it using the type

system that we just defined in Section 3.3. The Auction module, from Listing 1.3,

has two public functions, buyer and auctioneer, which should follow the auction

and auction protocols, respectively.

Typechecking is initiated by the [tModule] rule (`M , Section 3.3.4), where

the module is typechecked using the judgement:

` defmodule Auction do P̃ D̃ end

In this case, D̃ contains the two public functions (i.e., buyer and auctioneer),

and P̃ contains one private function (i.e., decide). The premise of [tModule]

45

Chapter 3. A Formal Analysis

dictates that each function should be typechecked using the term typing judgement

∆ · Γ `w S B t : T C S ′ from Figure 3.6. It also states that each function (f/n)

should follow its initial session type S (obtained from sessions(f/n)), and reach

the residual session type (S ′, which set to end by [tModule]). The latter ensures

that if a well-typed function terminates, then it fully consumes the initial session

type S. We focus on the function buyer (f/n = buyer/2), which should follow the

auction session type. We start by typechecking its body, t:

send(auctioneer_pid, {:bid, amount})

receive do

{:sold} -> :yay

{:higher, value} -> decide(auctioneer_pid, amount, value)

end

t

Since this body t contains multiple sequential statements, it is typechecked

using the [tLet] rule (Figure 3.6), as follows:

∆ · Γ `w!bid(number).S1 B t : atomC end

where w = auctioneer pid, ∆ = (buyer/2:auction), and

S1 = &

?sold().end,

?higher(number). ⊕

!quit().end,

!continue().auction

The term t is split in two statements; a send statement, followed by a receive

construct. The [tLet] rule typechecks them in order, so the send statement is first

typechecked using the [tChoice] rule, as follows:

46

Chapter 3. A Formal Analysis

∆ · Γ `w!bid(number).S1 B send(auctioneer pid, {:bid, amount})

: {atom, number}C S1

This [tChoice] rule dictates that the label being sent must match with one of

the labels offered by the choice session type, in this case the session type only

offers a single choice (i.e., !bid(number)). Moreover, the addressee of this message,

auctioneer pid, must also match with the pid of the dual process, w. Having

verified these details, the residual session type results in S1, meaning that the

subsequent receive statement must adhere to the initial session type S1 and residual

session type end. The receive construct is then typechecked using [tBranch]:

∆ · Γ `w &

?sold().end,

?higher(number).S2

B

receive do

{:sold} -> :yay

{:higher, value} -> t2

end

 : atomC end

where t2 = decide(auctioneer pid, amount, value). The branching session

type in this rule dictates that two branches are required, labelled sold and

higher. The branch the with label higher introduces a new variable called

value, extending Γ, and by Example 3.4 we know that the variable value has

type number. Furthermore, the terms inside each branch must match with a

corresponding continuation branch, i.e., end and S2, respectively. The first branch

(:yay) matches immediately with the session type end, since there are no further

interactions. The second branch, t2, must be compared with the initial session type

S2:

S2 = ⊕

!quit().end,

!continue().auction

Since t2 is a call to a private function, called decide/3, which has an unknown

session type (i.e., decide/3 /∈ dom(∆)), then the function’s body must be

typechecked using the [tRecUnknownCall] judgement, as follows, where it

47

Chapter 3. A Formal Analysis

inherits the remaining session type S2:

∆ · Γ `w S2 B decide(auctioneer pid, amount, value) : atomC end

The body of the function decide can be typechecked using the [tChoice] rule,

since the S2 session type offers a choice to send a label (quit or continue). This

should successfully terminate the typechecking for the buyer function, since the

initial session type auction becomes fully exhausted. This [tChoice] rule is the

last check required, thus declaring the buyer function as well-typed. The remaining

function, auctioneer, should also be typechecked in a similar manner, to ensure

that it is obeys auction.

As another example, we consider the first line from the problematic buyer

function (from Listing 1.2) and attempt to typecheck it with respect to the auction

protocol. This buyer function (shown below) attempts to send a bid accampanied

by a true value:

send(auctioneer_pid, {:bid, true})

...

This can be typechecked using [tChoice]:

∆ · Γ `w!bid(number).S1 B send(auctioneer pid, {:bid, true}) : atomC S1

The [tChoice] rule matches both the label and the types of the payloads. So, if we

compare the message {:bid, true} to the expected session type !bid(number), we

can notice that the payload (i.e., true) is a boolean rather than a number. Thus,

typechecking fails, flagging this as an ill-typed function.

48

Chapter 3. A Formal Analysis

3.5 Semantics

The final part of the formal analysis involves formulating a transition semantics

(or operational semantic) of our language defined in Section 3.2. The semantics

show how a program executes step-by-step, thus modelling the runtime behaviour

of a typical Elixir program. Using these transition semantics, we will be able to

validate our type system further, which we will then see in detail in the subsequent

chapter.

From Figure 3.1 we know that modules consist of several functions. To execute

these functions, we can spawn them, which results in a new process executing their

body. A body t executes by transitioning from one state to another, where it

produces some action α as a result. Concretely, we write this as t
α−→ t′, meaning

that a term t transitions to a new term t′, producing an action α. This action α

can take the following forms (from Act):

α ∈ Act ::= ι! {:l, ṽ} Send message

| ? {:l, ṽ} Receive message

| f/n Function call

| τ Silent
internal

external

The actions (α) can produce an external side-effect, i.e., a message is sent

(ι! {:l, ṽ}) or received (? {:l, ṽ}) and we discipline these external side-effects using

session types. Additionally, there are internal actions, i.e., a function call (f/n),

and a silent transition (τ), which have no observable side-effects from external

processes.

We formulate the transitions from t to t′ (producing α) in a form of a labelled

transition system (LTS) [34], described in Definition 2.1. Our LTS consists of a

triple 〈(Terms,Σ),Act,→〉, where Terms represents the set containing all forms

of terms, i.e., t, t′ ∈ Terms. The transition t
α−→
Σ

t′ is a shorthand notations

for the relation →⊆ ((Terms,Σ) × Act × ((Terms,Σ)). Note that, transitions

49

Chapter 3. A Formal Analysis

t
α−→
Σ
t′ t1

α−→ t′1[rLet1]
x = t1; t2

α−→ x = t′1; t2
[rLet2]

x = v; t
τ−→ t [v/x]

ek → e′k[rChoice1]
send (ι, {:l, v1, . . . , vk−1, ek, . . . , en})

τ−→ send (ι, {:l, v1, . . . , vk−1, e
′
k, . . . , en})

[rChoice2]
send (ι, {:l, v1, . . . , vn})

ι!{:l,v1, ..., vn}−−−−−−−−→ {:l, v1, . . . , vn}

∃j ∈ I lj = li match(p̃j, ṽ) = σ
[rBranch]

receive do ({:li, p̃i} → ti)i∈Iend
?{:lj , ṽ}−−−−−→ tjσ

ek → e′k[rCall1]
f (v1, . . . , vk−1, ek, . . . , en)

τ−→ f (v1, . . . , vk−1, e
′
k, . . . , en)

Σ (f/n) = Ω Ω.body = t Ω.params = x2, . . . , xn Ω.dual = y
[rCall2]

f (ι, v2, . . . , vn)
f/n−→ t [ι/y] [v2, . . . , vn/x2, . . . , xn]

e→ e′[rCase1]
case e do (pi → ti)i∈Iend

τ−→ case e′ do (pi → ti)i∈Iend

∃j ∈ I match(pj, v) = σ
[rCase2]

case v do (pi → ti)i∈Iend
τ−→ tjσ

e→ e′
[rExpression]

e
τ−→ e′

Figure 3.7: Term transition semantic rules

use information from a well-formed function information environment (Σ), which

we leave implicit in the transitions, since Σ remains static during transitions.

Therefore, we use the notation t
α−→ t′ for transitions.

The transitions are defined by the term transition semantic rules, depicted in

Figure 3.7. We start from the most straightforward rules, [rLet1] and [rLet2],

which deal with the evaluation of a let statement, x = t1; t2. We use a call-by-

value semantic, where the first term t1 transitions fully to a value, before being

substituted for x in t2, using the Variable Substitution Definition (Definition A.7).

Substitution is a partial function that swaps variables for their actual values.

50

Chapter 3. A Formal Analysis

Substitutions are denoted as [v/x], or [v1, v2/x1, x2] in case of multiple substitutions.

For example, the expression (2 + x) [4/x] results in 2 + 4 after the substitutions.

The send statement, send (ι, {:l, e1, . . . , en}), evaluates by first reducing each

part of the message to a value, starting from the leftmost expression. So first,

expression e1 is reduced to v1, until the rightmost expression, en, is finally reduced

to vn. This is carried out in [rChoice1] using the expression reduction rules defined

in Figure 3.8. Rule [rChoice1] produces no side-effects, so the action α is set to

τ (i.e., a silent transition). Then, when the whole message is reduced to a value

{:l, v1, . . . , vn}, rule [rChoice2] is used to perform the actual message sending

operation, resulting in action α = ι! {:l, v1, . . . , vn}, where ι is the pid value of

the addressee.

The receive construct, receive do ({:li, p̃i} → ti)i∈Iend, is evaluated in

[rBranch]. When a message is received (i.e., α = ? {:lj, ṽ}), it is matched with

a valid branch from the receive construct, using the label :lj as the key. Then,

the payload of the message (ṽ) is compared to the patterns in the selected branch

(p̃j) using match(p̃j, ṽ). This match function (Definition 3.5) produces some

substitutions σ, mapping the newly defined variables (from p̃j) to their values.

The substitutions σ are used to swap the free variables in tj with their values.

Definition 3.5 (Pattern Matching). The match function pairs patterns with

a corresponding value, resulting in a sequence of substitutions (called σ), e.g.

match(p, v) = [v1/x1] [v2/x2] = [v1, v2/x1, x2]. Note that, a sequence of match outputs

are combined together, where the empty substitutions (i.e., []) are ignored.

match(p̃, ṽ) = match(p1, v1), . . . , match(pn, vn)

where p̃ = p1, . . . , pn and ṽ = v1, . . . , vn

51

Chapter 3. A Formal Analysis

match(p, v) =

[] p = b, v = b and p = v

[v/x] p = x

match(w1, v1), match(w2, v2) p = [w1 | w2] , v = [v1 | v2]

match(w1, v1), . . . , match(wn, vn) p = {w1, . . . , wn} and
v = {v1, . . . , vn} �

Definition 3.6 (Variable Patterns). Computes an ordered set of variables from a

given pattern p.

vars(p̃) = vars(p1, . . . , pn) = vars(p1) ∪ · · · ∪ vars(pn)

vars(p) =

∅ p = b

{x} p = x

vars(w1) ∪ vars(w2) p = [w1 | w2]

∪i∈1..nvars(wi) p = {w1, . . . , wn} �

Example 3.6. Consider the pattern p1 = {x, 2, y} and the value v1 = {8, 2, true}.

By the vars definition, we can extract the variables from p1, i.e., vars(p1) = {x, y}.

We can also use the match definition to assign values to these variables. In this

case, match(p1, v1) = σ where σ = [8/x] [true/y] or σ = [8, true/x, y].

The match definition is also used to enforce correctness of the values. E.g., we

replace p1 by the new pattern p2 = {x, 2, false}. In this case, match(p2, v1) fails,

since p2 expects a false value as the third element, but finds a true value instead. �

A function call is evaluated in [rCall1], by reducing all of its parameters to a

value, using the expression reduction rules. Then, in [rCall2], a function f with

arity n produces an internal action depicting the function’s name, i.e., α = f/n.

This is used to fetch the function’s parameter name and body from Σ. The body

52

Chapter 3. A Formal Analysis

e→ e′

e1 → e′1[reOperation1]
e1 � e2 → e′1 � e2

e2 → e′2[reOperation2]
v1 � e2 → v1 � e′2

v = v1 � v2[reOperation3] v1 � v2 → v
e→ e′[reNot1]

not e→ e′
v′ = ¬v[reNot2]

not v → v′

e1 → e′1[reList1]
[e1 | e2]→ [e′1 | e2]

e2 → e′2[reList2]
[v1 | e2]→ [v1 | e2]

ek → e′k[reTuple]
{v1, . . . , vk−1, ek, . . . , en} → {v1, . . . , , vk−1, e

′
k, . . . , en}

Figure 3.8: Expression semantic rules

transitions further after substituting the parameters with their values.

A case construct is evaluated in [rCase1], by first reducing the expression which

is being matched. Then, [rCase2] matches the value with the correct branch, using

the match, akin to [rBranch]. Finally, [rExpression] reduces an expression

using the expression semantic rules.

The expression semantic rules are defined in Figure 3.8, which use the form

e → e′, where e is reduced to e′, producing no internal or external actions.

Binary operations are reduced in [reOperation1] and [reOperation2], and then

evaluated in [reOperation3]. The negation operation is similarly reduced in

[reNot1] and [reNot2]. Tuples and lists are reduced in [reTuple], [reList1]

and [reList2].

3.6 Conclusion

In this chapter, we formalised a core Elixir language and created a session typing

system for it. This type system typechecks functions with respect to an interaction

protocol, which we define explicitly via session types. This chapter fulfils the first

part of Objective O1, since we provided a formal foundation for Elixir programs

53

Chapter 3. A Formal Analysis

in the form of a type system and transitional semantics. The remaining part of

this objective is addressed in the following chapter (Chapter 4), where the type

system is validated from a formal perspective. In Chapter 5, this type system is

implemented as a proof-of-concept implementation in Elixir.

54

4. Metatheory

In Chapter 3 we formalised a type system that verifies whether (public) functions

follow their session endpoint specification. This chapter addresses the remaining

part of Objective O1, where the type system is validated by proving its formal

properties.

We analyse these properties by associating the static session typing rules (from

Section 3.3) with the transition semantics (from Section 3.5). We do this by

proving type preservation, which states that if a well-typed term transitions, the

resulting term then remains well-typed [31]. Given that we are dealing with a

session typing system, and not just an ordinary functional typing system, we

extend this preservation property to prove session fidelity – which states that if

a well-(session-)typed term follows an initial session type S and transitions with

action α, then the resulting term remains well-typed with respect to S ′. This

session type S ′ is obtained by from S and α. This ensures that the program

will not encounter behavioural errors (e.g., certain deadlocks or communications

mismatches) when executing.

To accomplish this, we define some auxiliary propositions before forming the

Session Fidelity Theorem. We analyse the dynamic type system (defined in

Section 3.5); bridging closed terms with the transition semantics, leading to the

Closed Term Proposition (Proposition 6). Following this, we discuss the static

type system (defined in Section 3.3), and more specifically, determine properties

55

Chapter 4. Metatheory

Closed Term Environment
(Proposition 13)

Strengthening
(Lemma 7)

Weakening
(Lemma 8)

Lemma 11

Lemma 10

Closed Term
(Proposition 6)

Corollary 2 Lemma 1

Lemma 4

Lemma 3

Closed Expression
(Lemma 5)

∆-Weakening
(Lemma 9)

Session Fidelity (Theorem 19)

Preservation (Expressions)
(Lemma 17)

Value Typing
(Lemma 14)

Substitution
(Lemma 12)

Lemma 15 Corollary 16

used byKey:

Figure 4.1: Lemmas and propositions leading to session fidelity

56

Chapter 4. Metatheory

related to closed terms and their environments. This results in the Closed Term

Environment Proposition (Proposition 13). These two aforementioned propositions

act as a sanity check on the transition semantics, and the static type system,

respectively. Finally, following these two propositions, we merge the static type

system with the dynamic type system, where we form (and prove) the Session

Fidelity Theorem. This is the most crucial part, since it verifies that: (i) a well-

typed system remains well-typed even after transitioning; and that (ii) this same

system is faithful to the protocol depicted by the session types.

The interactions of all the lemmata and propositions used, leading up to the

Session Fidelity Theorem, are illustrated in Figure 4.1. We provide detailed

proofs where possible, but exclude those that are less demanding to improve the

readability of the chapter.

4.1 Validating the Transition Semantics

In Section 3.5, we defined a transition semantics in the form of an LTS, modelling an

Elixir program at runtime. This transition semantics can be analysed in a number

of ways: (i) the semantics can be compared with the actual implementation of

the Elixir compiler itself, which goes beyond the scope of our study; (ii) it can be

compared with the static semantics (i.e., type system), which we will see through

the Session Fidelity Theorem; and (iii) it can be analysed with respect with its

closeness properties. In this section, we consider the last property (Item iii).

Open programs (i.e., programs with free variables) are seen as incomplete

programs, and cannot execute correctly due to missing information. Conversely, a

program is complete, if it is closed, i.e., it has no free variables (Definition 3.2).

So, we require that when a closed program evaluates, it must remain closed. We

show this in the Closed Term Proposition (Proposition 6).

Before proving Proposition 6, we must analyse some properties about closed

terms, where we see how they affect variable substitutions (Definition A.7). In

57

Chapter 4. Metatheory

Lemma 1, if some variable x does not exist in term t, then, if we replace x with

some value, t must remain the same, i.e., t [v/x] = t. Restricting this statement,

we can say that, if x is not a free variable in t, then the same result should hold

(Corollary 2). Lemma 3 consists of two statements that compare the free variables

in terms (or expressions) with those that include a substitution.

Lemma 1. x /∈ fv(t) ∪ bv(t) implies t [v/x] = t

Proof. By induction on the structure of t. �

Corollary 2. x /∈ fv(t) implies t [v/x] = t

Proof. Straightforward from Lemma 1. �

Lemma 3.

i. x ∈ fv(t) implies fv(t [v/x]) = fv(t) \ {x}

ii. x ∈ fv(e) implies fv(e [v/x]) = fv(e) \ {x}

Proof. By induction on the structures of t and e for Items i and ii respectively. �

Lemma 4. match(p, v) = [v1, . . . , vn/x1, . . . , xn], implies vars(p) = {x1, . . . , xn}

Proof. By induction on the structure of p. �

Lemma 5 (Closed Expression). fv(e) = ∅ and e→ e′ implies fv(e′) = ∅

Proof. By induction on the structure of e. �

Finally, Lemmata 1–5 lead to the Closed Term Proposition (Proposition 6).

By this proposition, we can say that a closed term t remains closed, even after t

transitions to some new term t′, producing an action α. Lemma 5 is analogous; it

states that expressions remain closed after reductions.

58

Chapter 4. Metatheory

Proposition 6 (Closed Term). If fv(t) = ∅ and t
α−→ t′, then fv(t′) = ∅

Proof. By induction on the structure of t. We provide two main cases (see

Appendix B for the full proof).

[t = send (w, {:l, e1, . . . , en})] Given that current structure of t, we can

derive t
α−→ t′ using two cases:

1. [rChoice1] From this rule, we know that α = τ and

t′ = send (ι, {:l, v1, . . . , vk−1, e
′
k, . . . , en})

ek → e′k (5a)

Since fv(t) = ∅, then by the fv definition

fv(ι) = ∅ (5b)

fv(vi) = ∅ for i ∈ 1..k − 1 (5c)

fv(ei) = ∅ for i ∈ k..n (5d)

Applying the Closed Expression Lemma to eqs. (5a) and (5d), results in

fv(ek) = ∅. Using this information along with eqs. (5b–d) and the fv

definition, results in fv(t′) = ∅ as required.

2. [rChoice2] In this case t = {:l, v1, . . . , vn} and t′ = {:lµ, v1, . . . , vn}.

Since from the premise fv(t) = ∅, then using the fv definition,

fv(ι) = ∅, fv(vi) = ∅ for i ∈ 1..n (5e)

To show that fv({:lµ, v1, . . . , vn}) = ∅, we can apply eq. (5e) to the fv

definition.

[t = receive do ({:li, p̃i} → ti)i∈Iend] From the premise, we know that

fv(t) = ∅, so by the fv definition,

fv(ti) \ vars(p̃i) = ∅ for all i ∈ I (6a)

Given that current structure of t, we can deduce t
α−→ t′ using [rBranch],

59

Chapter 4. Metatheory

where α = ? {:lj, v1, . . . , vn} for some j ∈ I, and

match(p̃j, ṽ) = σ where σ = [v′1, . . . , v′k/x1, . . . , xk] (6b)

t′ = tjσ

From eq. (6b), we can apply Lemma 4 to get

vars(p̃j) = {x1, . . . , xk} (6c)

Substituting eq. (6c) in eq. (6a) (for i = j), we get fv(tj) \ {x1, . . . , xk} = ∅.

Our aim is to get tjσ = ∅, so we check if x ∈ fv(tj). If this is valid, then

by Lemma 3, we can conclude that fv(tj [v′1/x1]) \ {x2, . . . , xk} = ∅. In case

when x /∈ fv(tj), the same can be concluded by Corollary 2. Applying the

same procedure for a total of k times, results in fv(tj [v′1, . . . , v′k/x1, . . . , xk]) = ∅,

as required.

The remaining cases are found in Appendix B. �

4.2 Properties of Typing

We provide some information regarding our type systems, including the

strengthening and weakening properties. These will allow us to reason about the

variable binding environment, Γ, in out typing judgement ∆ · Γ `w S B t : T C S ′.

Consequently, by Proposition 13, we shall conclude that when typing closed terms,

the initial the typing judgement makes no assumptions on the variable binding

environment, and can thus be empty, i.e., Γ = ∅.

Certain changes in the mappings of the ∆ and Γ environments, do not affect

the derivation of a typing judgement. Starting from the Strengthening Lemma

(Lemma 7), we show that under some restrictions, we can safely remove mappings

from the variable binding environment Γ, without affecting the overall typing result.

This lemma consists of two statements: (i) we can strengthen Γ, by removing the

mapping x:T , with the condition that x cannot be a free variable in the concerned

60

Chapter 4. Metatheory

term t; (ii) the second statement is similar to (i), with the difference that it is

applied to expressions instead of terms.

Lemma 7 (Strengthening).

i. If ∆ · (Γ, x : T ′) `w S B t : T C S ′ and x ∈ fv(t), then ∆ · Γ `w S B t : T C S ′

ii. If Γ, x : T ′ `exp e : T and x ∈ fv(e), then Γ `exp e : T

Proof. We prove Item i by induction on the derivation of ∆ · (Γ, x : T ′) `w S B t :

T C S ′. Similarly, for Item ii, we prove it by induction on Γ, x : T ′ `exp e : T . �

Dual to the Strengthening Lemma is the Weakening Lemma (Lemma 8), which

is able to expand the variable binding environment Γ without any side-effects.

Lemma 8 (Weakening).

i. If ∆ · Γ `w S B t : T C S ′, then ∆ · (Γ, x : T ′) `w S B t : T C S ′

ii. If Γ `exp e : T , then Γ, x : T ′ `exp e : T

Proof. We prove Item i by induction on the derivation of ∆ · Γ `w S B t : T C S ′,

and Item ii is proved by induction on the derivation of Γ `exp e : T . �

Similar to the Weakening Lemma which weakens (i.e., extends) the variable

binding environment Γ, the ∆-Weakening Lemma extends the session typing

environment ∆ without affecting the typing results.

Lemma 9 (∆-Weakening). If ∆·Γ `w SBt : TCS ′, then (∆,∆′)·Γ `w SBt : TCS ′

Proof. In Appendix B. �

In Section 3.3.2, we presented the pattern typing judgement, `wpat p : T B Γ. By

Lemma 10, we can match the variables from the pattern p to the variables inside the

mapping produced by this judgement (Γ). For example, from `wpat {x, 4, y} : T B Γ,

the domain of the mapping Γ will contain {x, y}.

61

Chapter 4. Metatheory

Lemma 10. Given some pattern p, such that `wpat p : T B Γ, then vars(p) =

dom(Γ)

Proof. Follows by induction on `wpat p : T B Γ. In Appendix B. �

Lemma 11. If fv(e) = ∅ and Γ `exp e : T , then ∅ `exp e : T

Proof. Follows by induction on the derivation of Γ `exp e : T .

[tVariable] From the rule e = x and by the fv definition, fv(x) 6= ∅. Therefore,

case holds trivially.

[tLiteral], [tEList] The variable binding environment (Γ) is unused, so cases

hold immediately.

[tTuple] From the rule, we know that e = {e1, . . . , en} and

Γ `exp ei : Ti for all i ∈ 1..n (7a)

Since fv(e) = ∅, by the current structure of e and the fv definition, we get

fv(e1) = ∅ for all i ∈ 1..n (7b)

Using eqs. (7a) and (7b) and the inductive hypothesis, we get ∅ `exp ei : Ti

for i ∈ 1..n. Applying the latter to [tTuple], results in ∅ `exp e : T , as

required, so case holds.

The remaining cases are analogous to the previous case. �

Our type system can possess the property of session fidelity, if well-typed terms

remain well-typed after transitioning. As terms transition, in particular in the

rules [rLet2], [rCall2] and [rBranch], variables are substituted with values.

The Substitution Lemma (Lemma 12) ensures that when free variables inside of

terms and expressions are substituted with a closed value, the resulting terms

and expressions remain well-typed. As a result, the substituted variables become

redundant, and thus can be removed from the variable binding environment, Γ.

This lemma consists of two statements, where substitution is performed in (i) terms,

and (ii) expressions.

62

Chapter 4. Metatheory

Lemma 12 (Substitution).

i. If Γ `exp v : T ′ and ∆ · (Γ, x : T ′) `w S B t : T C S ′, then

∆ · Γ `w[v/x] S B t [v/x] : T C S ′

ii. If Γ `exp v : T ′ and Γ, x : T ′ `exp e : T , then Γ `exp e [v/x] : T

Proof. By induction on the derivation of ∆ · (Γ, x : T ′) `w SB t : T CS ′ for Item i,

and by induction on the derivation of Γ, x : T ′ `exp e : T for Item ii. �

In the [tModule] (Section 3.3.4), we explained how typechecking is initiated,

i.e., it is performed by typechecking each public function individually using the

typing judgement ∆ · Γ `w S B t : T C S ′. The session typing environment

(∆), and the variable binding environment (Γ) are the prior assumptions that

the typing judgement has to make. We assert that when each public function

is typechecked, this typing judgement does not need any prior assumptions bar

one. The only assumption is in ∆, which should contain a mapping containing

the current function’s session type. Since the function definitions are always closed

(i.e., their body has no free variables), then the variable binding environment Γ

should not contain any prior assumptions, i.e., Γ can be set to the empty mapping

(∅). We show this in Closed Term Environment Proposition (Proposition 13), which

acts as a sanity check over our type system defined in Section 3.3.

Proposition 13 (Closed Term Environment). If fv(t) = ∅ and ∆ · Γ `w S B t :

T C S ′, then ∆ · ∅ `w S B t : T C S ′

Proof. By induction on the typing derivation ∆ ·Γ `w S B t : T ′CS ′. We consider

the main cases:

[tBranch] From the rule, we know that t = receive do ({:li, p1
i , . . . , p

n
i } → ti)i∈Iend,

and

∀i ∈ I ·

{
`wpat p

j
i : T ji B Γji for all j ∈ 1..n (8a)

∆ ·
(
Γ,Γ1

i , . . . , Γni
)
`w Si B ti : T C S ′ (8b)

63

Chapter 4. Metatheory

Since fv(t) = ∅, then by the Free Variables Definition, we know that

fv(ti) \ vars(p1
i , . . . , p

n
i) = ∅ for all i ∈ I (8c)

From eq. (8c) we have to consider two sub-cases:

1. If for all x ∈ vars(p1
i , . . . , pni), such that x /∈ fv(ti), then we can

immediately conclude by eq. (8c) that

fv(ti) = ∅ for all i ∈ I (8d)

By eq. (8d), (8b) and the inductive hypothesis, we get ∆ · ∅ `w Si B ti :

T C S ′. In order to add Γ1
i , . . . , Γni to the variable binding environment,

we can apply the Weakening Lemma, resulting in ∆ ·
(
Γ1
i , . . . , Γni

)
`w

Si B ti : T C S ′.

2. In the other case, where there is some x ∈ vars(p1
i , . . . , p

n
i), such that

x ∈ fv(ti), then by repeatedly applying Lemma 10 to eq. (8a), we get

vars(p1
i , . . . , p

n
i) = dom(Γ1

i , . . . , Γni) for all i ∈ I. This means that if

we collect all of the free variables from ti, they will be equivalent to the

domain of Γ1
i , . . . , Γni . Thus, we can strengthen eq. (8b) to reduce(

Γ,Γ1
i , . . . , Γni

)
into

(
Γ1
i , . . . , Γni

)
using the Strengthening Lemma,

resulting in ∆ ·
(
Γ1
i , . . . , Γni

)
`w Si B ti : T C S ′.

Using the (same) result from both sub-cases, along with eq. (8a), we can

apply [tBranch] to get ∆ · ∅ `w S B t : T C S ′, as required.

[tRecUnknownCall] From the rule, we know that t = f (w, e2, , . . . , en) and

Γ `exp ei : Ti for all i ∈ 2..n (9a)

(∆, f/n : S) ·
(
Γ, y : pid, x̃ : T̃

)
`y S B t̄ : T C S ′ (9b)

where x̃, T̃ , t̄, T and y are obtained from Σ

Since fv(t) = ∅, by the definition of fv, we know that fv(ei) = ∅ for all

i ∈ 2..n. Using this information, along with eq. (9a) and Lemma 11, we get

∅ `exp ei : Ti for all i ∈ 2..n (9c)

64

Chapter 4. Metatheory

Since the function information environment, Σ, must be well-formed, we

know that for all f/n ∈ dom(Σ),

fv
(
Σ(f/n).body

)
\
(
Σ(f/n).params ∪ {Σ(f/n).dual}

)
= ∅

From the premise of [tRecUnknownCall], Σ(f/n) is defined explicitly,

thus we can say that the only free variables in t̄ are y and x̃. This allows

us to strengthen eq. (9b), to remove Γ, using the Strengthening Lemma,

to get (∆, f/n : S) ·
(
y : pid, x̃ : T̃

)
`y S B t̄ : T C S ′. Using this

information and eq. (9c) as the premise for [tRecUnknownCall], we get

∆ · ∅ `w S B t : T C S ′, as required.

Regarding the remaining cases: Case [tExpression] holds immediately using

Lemma 11; Cases [tCase] and [tLet] are similar to [tBranch]. Finally,

Cases [tChoice] and [tRecKnownCall] hold effortlessly if we apply the

Free Variables Definition and Lemma 11. �

4.3 Session Fidelity

Before showing that typing is preserved under reduction, and that terms are

faithful to a session type, we must define further auxiliary lemmata. Starting

from Lemma 14, it links a type to the basic values (and vice versa), e.g. the value

5 has type number.

Lemma 14 (Value Typing).

i. Γ `exp v : boolean iff v = boolean

ii. Γ `exp v : number iff v = number

iii. Γ `exp v : atom iff v = atom

iv. Γ `exp v : pid iff v = ι

v. Γ `exp v : [T] iff v = [v1 | v2] or v = []

vi. Γ `exp v : {T̃} iff v = {ṽ}

Proof. By case analysis on the expression typing rules. �

Lemma 15 provides a guarantee that the variables inside the substitutions

produced by the match function have the expected types. It also ensures that

the variables from the same substitutions, which are stored in Γ, are assigned with

65

Chapter 4. Metatheory

the same types. Consequently, Corollary 16 provides the same guarantees but for

a sequence of patterns and values.

Lemma 15. For all patterns p and values v,

match(p, v) = [v1, . . . , vn/x1, . . . , xn]

`wpat p : T B Γ

∅ `exp v : T

 =⇒

 Γ = x1 : T1, . . . , xn : Tn

∅ `exp vi : Ti for i ∈ 1..n

Proof. In Appendix B. �

Corollary 16. For all patterns p̃ = p1, . . . , pn, values ṽ = v1, . . . , vn and

∀j ∈ 1..n, then the following implication holds.

match(p̃, ṽ) = [v′1, . . . , v′k/x1, . . . , xk]

`ypat p
j : T j B Γj

∅ `exp vj : T j

 =⇒

 Γ̃ = Γ1, . . . , Γj = x1 : T1, . . . , xk : Tk

∅ `exp v
′
i : Ti for i ∈ 1..k

Proof. In Appendix B. �

Terms and expression can be executed to get tangible results – this happens

during transitions (for terms) and reductions (for expressions). Starting with

expressions, in the Preservation (Expressions) Lemma (Lemma 17), we show that

the type of expressions remains unchanged (or preserved) after an expression is

reduced. This means that expressions should have a constant type in all steps of

reductions, until the expression cannot be reduced further. The term Preservation

is sometimes referred to as Subject Reduction [31].

Lemma 17 (Preservation (Expressions)). If ∅ `exp e : T and e → e′, then

∅ `exp e
′ : T

Proof. Follows by induction on ∅ `exp e : T . We consider the main cases:

[tTuple] From the rule, we know that e = {e1, . . . , ek, . . . , en}, T =

{T1, . . . , Tn} and

∅ `exp ei : Ti for all i ∈ 1..n (10a)

66

Chapter 4. Metatheory

Deriving e→ e′ using [reTuple] results in e′ = {v1, . . . , vk−1, e
′
k, . . . , en}

and

ek → e′k (10b)

Applying eqs. (10a) and (10b) to the inductive hypothesis results in ∅ `exp

e′k : Tk. By the latter, eq. (10a) and [tTuple], we get ∅ `exp e′ : T , as

required.

[tArithmetic] From the rule we know that e = e1 � e2, T = number and

∅ `exp e1 : number (11a)

∅ `exp e2 : number (11b)

e→ e′ can be derived using different rules, so we consider three sub-cases:

1. [reOperation1] From this rule we know that e′ = e′1 � e2 and

e1 → e′1 (11c)

Applying eqs. (11a) and (11c) to the inductive hypothesis results in

∅ `exp e′1 : number. Using this information, along with eq. (11b) in

[tArithmetic], results in ∅ `exp e
′ : number, as required.

2. [reOperation2] Analogous to [reOperation1].

3. [reOperation3] From the rule, we know that e = v1 � v2 and e′ has some

value v = v1 � v2. Since we know that ∅ `exp e : T , or ∅ `exp v1 � v2 : T ,

then ∅ `exp e
′ : T follows immediately given that e′ = v = v1 � v2.

Regarding the remaining cases: Cases [tLiteral], [tVariable] and [tEList]

hold trivially, since e → e′ does not apply. Cases [tComparison] and

[tBoolean] are analogous to [tArithmetic]. Cases [tList] and [tNot]

take a similar approach to [tTuple]. �

67

Chapter 4. Metatheory

Evolution of expressions are unambiguous since expressions remain associated

to one type, e.g., in 2 + 3 → 5, the expression 2 + 3, which has type number,

is reduced to the value 5, which also has the same type. However, we also have

to consider how terms are evaluated. When a term transitions, it produces an

action (α), which can contain side-effects such as sending or receiving messages.

These side-effects are reflected by a session type that progresses depending on what

messages were sent or received, or remains constant if no messages were transferred.

This behaviour is shown in the following After Function Definition.

Definition 4.1 (After Function). The first application of the after function uses a

session type (S), where it evaluates the new session type expected after performing

a certain action (α). The function, denoted as after(S, α), provides a continuation

session type only if the action α is allowed by the protocol S, shown in Lemma 18.

The after function is defined as follows:

after(S, τ) = S

after(S, f/n) = S

after(⊕
{

!li
(
T̃i
)
.Si
}
i∈I , ι! {lj, ṽ}) = Sj where j ∈ I

after(&
{

?li
(
T̃i
)
.Si
}
i∈I , ? {lj, ṽ}) = Sj where j ∈ I

The after function is overloaded, where it extends the session typing environment

(∆) as follows. The function after(∆, α, S), computes a new session typing

environment given some action α and session type S:

after(∆, f/n, S) = ∆, f/n : S

after(∆, α, S) = ∆ if α 6= f/n �

Lemma 18. If agree(S, α) is defined, then there exists S ′, such that after(S, α) =

S ′

Proof. By induction on the definition agree(S, α). �

68

Chapter 4. Metatheory

The After Function Definition serves two purposes: (i) it implicitly says whether

an action α is following a protocol S, so after(S, α) will fail if the action α does

not follow S; we show this in Lemma 18, and (ii) the after function provides the

continuation session type, i.e., after(S, α) = S ′.

We now consider the most crucial theorem of the type system of Chapter 3, the

Session Fidelity Theorem. This is similar to the preservation property, however

it also takes the interaction protocols (i.e., session types) into consideration.

Intuitively, it states that when a term t is well-typed it must remain well-typed

even after it transitions. Concretely, a closed term t is well-typed, if this judgement

holds:

∆ · ∅ `w S B t : T C S ′ (12)

where S and S ′ are initial and residual session types, respectively, and T is the

basic expression type. Then, as term t transitions to a new term t′, it produces an

action α:

t
α−→ t′ (13)

Session fidelity holds, if the new term t′ remains well-typed, shown by this

judgement:

∆′ · ∅ `w S ′′ B t′ : T C S ′ (14)

where the evolved S ′′ and ∆′ are computed using the After Function Definition,

i.e., after(S, α) = S ′′ and after(∆, α, S) = ∆′.

The session fidelity property gives multiple guarantees. First of all, the

expression type must remain preserved, which is shown by the constant type T

in eqs. (12) and (14). Furthermore, the term t must follow an interaction protocol

starting from the initial session type S up to the residual session type S ′ (eq. (12)).

Then, when t transitions to t′ (eq. (13)), term t′ must follow the evolved initial

session type S ′′ and residual session type S ′ (eq. (14)).

When typechecking each function, as initiated by [tModule], the residual

session type S ′ is set to the end type. This is important, since the session fidelity

69

Chapter 4. Metatheory

guarantees that as term transitions, the actions produced will follow the protocol

defined by S up to S ′. Furthermore, if a term t is terminates (i.e., no more

transitions are allowed), then we know that the initial protocol S must have reduced

to end, thus fully exhausting the defined protocol.

Example 4.1. Consider a closed term t1, which is well-typed using this judgement:

∆ · ∅ `w S1 B t1 : T C end . Term t1 must follow the initial session type S1 and

residual session type end. The session fidelity property states that if t1 transitions

to t2, producing action α1, then t2 must follow the new evolved session type S2

(produced using the after function, i.e., S2 = after(S1, α1)). Finally, if the term

terminates (i.e., becomes a value v), then the protocol S1 must have been fully

exhausted, reaching the final session type end. This example transition is shown in

the following trace:

t1
S1

t2
after(S1,α1)=S2

. . . t4
after(S3,α3)=S4

v
after(S4,α4)= end

α1 α2 α3 α4 \

�

Example 4.2. We consider a concrete example to show how typing behaves under

transitions. From the auction example (Listing 1.3), the buyer process needs to

obey the auction protocol:

auction = !bid(number).&

?sold().end,

?higher(number). . . .

In this example, the buyer process starts by sending a message containing a bid

label to the auctioneer’s pid (ιauct), as shown in the snippet of the function body t.

70

Chapter 4. Metatheory

x = send(ιauct, {:bid, 50})

receive do # ...

x = {:bid, 50}

receive do # ...

t t′
α = ιauct! {bid, 50}

As the process evaluates, term t transitions to t′, where it sends a message as a

side-effect. This side-effect is denoted as action α, where α = ιserver! {bid, 50}. By

the After Function Definition, auction evolves to a new session type S ′′:

S ′′ = after(auction, α) = &

?sold().end,

?higher(number). . . .

For t′ to remain well-typed, it must now match with the evolved session type S ′′,

where it has to be able to receive a message labelled stop or higher. The term t′

may transition further until it reaches the end session type, where it fully consumes

the auction session type. �

In the Session Fidelity Theorem (Theorem 19), when a well-typed term t

transitions, the term t must be faithful to some initial and final session types, S and

S ′, respectively. The term t must be a closed term, in which when it transitions to

t′ (i.e., t
α−→ t′), an action α is produced which affects the initial session type S and

the session typing environment ∆, as defined by the After Function Definition.

Furthermore, the term typing judgement makes no prior assumptions (e.g., Γ is

empty), as explained in Proposition 13. Theorem 19 utilises the information from

the function information environment, Σ, which provides information about the

functions in a module, and was used similarly in the [tModule] typing rule.

71

Chapter 4. Metatheory

Theorem 19 (Session Fidelity). If ∆ · ∅ `wΣ S B t : T C S ′ and t
α−→
Σ
t′, then there

exists some S ′′ and ∆′, such that ∆′ · ∅ `wΣ S ′′ B t′ : T C S ′ for after(S, α) = S ′′

and after(∆, α, S) = ∆′

Proof. By induction on the typing derivation ∆ · ∅ `wΣ S B t : T C S ′.

[tLet] From the rule, we know that x 6= w, and

t = (x = t1; t2) (15a)

∆ · ∅ `w S B t1 : T ′ C S ′′′ (15b)

∆ · (x : T ′) `w S ′′′ B t2 : T C S ′ (15c)

From the structure of t (eq. (15a)), term transitions (t
α−→ t′) can be derived

using two rules, so we consider two sub-cases:

1. [rLet1] From this rule, we know that t′ = (x = t′1; t2) and

t1
α−→ t′1 (15d)

By eqs. (15b) and (15d) and the inductive hypothesis we obtain

∆′ · ∅ `w S ′′ B t′1 : T ′ C S ′′′ (15e)

where after(S, α) = S ′′ and after(∆, α, S) = ∆′. Also, by the After

Function Definition, we know that ∆′ is an extension of ∆, so we can

apply the ∆-Weakening Lemma on eq. (15c) to get

∆′ · (x : T ′) `w S ′′′ B t2 : T C S ′ (15f)

Using eqs. (15e) and (15f) as the premise for rule [tLet], we obtain:

∆′ · ∅ `w S ′′ B t′1 : T ′ C S ′′′ ∆′ · (x : T ′) `w S ′′′ B t2 : T C S ′ x 6= w
[tLet]

∆′ · ∅ `w S ′′ B x = t′1; t2 : T C S ′

where ∆′ · ∅ `w S ′′ B t′ : T C S ′ is the expected result.

2. [rLet2] From the rule, we know that t = (x = v; t2), t′ = t2 [v/x] and

α = τ . Since t1 = v, by eq. (15b) and [tExpression], then ∅ `exp v : T ′

holds. If we apply this latter information and eq. (15c) to the Substitution

Lemma, we obtain ∆ · ∅ `w[v/x] S ′′′ B t2 [v/x] : T C S ′. This is the expected

72

Chapter 4. Metatheory

result, since by the Variable Substitution Definition, w [v/x] = w; and by

the after definition, S ′′′ = S and ∆′ = ∆.

[tBranch] From the rule, we know that for some n ∈ N and

S = &
{

?li
(
T 1
i , . . . , T

n
i

)
.Si
}
i∈I (16a)

t = receive do
({

:li, p
1
i , . . . , p

n
i

}
→ ti

)
i∈Iend (16b)

From the premise, we also know that some properties regarding each

individual branch from the receive construct:

∀i ∈ I

{
`wpat p

j
i : T ji B Γji for all j ∈ 1..n (16c)

∆ ·
(
Γ1
i , . . . , Γni

)
`w Si B ti : T C S ′ (16d)

From the structure of t (eq. (16b)), term reduction (t
α−→ t′) can only be

derived using [rBranch], where execution progresses to a single branch (i.e.,

tµ), rather than all branches. The right branch is chosen by matching its label,

li∈I , to the label received in the incoming message, lµ. Thus, for some k ∈ N,

there exists some µ ∈ I where lµ = li, and

α = ? {:lµ, v1, . . . , vn} (16e)

match((p1
µ, . . . , p

n
µ), (v1, . . . , vn)) = [v′1, . . . , v′k/x1, . . . , xk] (16f)

t′ = tµ [v′1, . . . , v′k/x1, . . . , xk]

From eq. (16e), α refers to the message received from the dual process. We can

compare the contents of this message to the original session type S (eq. (16a)),

to obtain information regarding the types of the individual values inside α.

We know that α contains a label lµ and n values. Thus for j ∈ 1..n, each

value vj, has a corresponding type T jµ from the session type S, where S

contains ?lµ
(
T 1
µ , . . . , T nµ

)
.Sµ. Formally, this can be written as

∅ `exp vj : T jµ for all j ∈ 1..n (16g)

Applying eqs. (16c), (16f) and (16g) into Corollary 16, results in Γ̃µ =

Γ1
µ, . . . , Γnµ = x1 : T1, . . . , xk : Tk and

∅ `exp v
′
m : Tm for m ∈ 1..k (16h)

73

Chapter 4. Metatheory

Applying eq. (16h) and ∆ · Γ̃µ `w Sµ B tµ : T C S ′ (from eq. (16d) for i = µ)

repeatedly to the Substitution Lemma, we get

∆ · ∅ `w Sµ B tµ [v′1, . . . , v′k/x1, . . . , xk] : T C S ′ (16i)

Since after(&
{

?li
(
T̃i
)
.Si
}
i∈I , α) = Sµ and after(∆, α, S) = ∆, then eq. (16i)

is the expected result.

[tChoice] From the rule, we know that for some µ ∈ I, T = {atom, T 1
µ , . . . , T

n
µ }

and

S = ⊕
{

!li
(
T̃i
)
.Si
}
i∈I (17a)

t = send (ι, {:lµ, e1, . . . , en}) (17b)

∅ `exp ej : T jµ for all j ∈ 1..n (17c)

From the structure of t (eq. (17b)), term reduction (t
α−→ t′) can be derived

by several rules, so we have to consider two sub-cases:

1. Derived by the rule [rChoice1], we know that α = τ and

t′ = send (ι, {:l, v1, . . . , vk−1, e
′
k, . . . , en})

ek → e′k (17d)

Applying eq. (17c) (for j = k) and eq. (17d) to the Preservation

(Expressions) Lemma, we get ∅ `exp e
′
k : Tk. Applying this and eq. (17c)

to [tChoice] results in ∆ · ∅ `w S B t′ : T C Sµ. Since after(S, τ) = S

and after(∆, α, S) = ∆, this holds.

2. [rChoice2] From this rule we know that

t′ = {:lµ, v1, . . . , vn}

α = ι! {:lµ, v1, . . . , vn} (17e)

where α (eq. (17e)) is the message being sent to the dual process with pid

ι.

Recall eq. (17c), where we have ∅ `exp ej : Tj
µ for j ∈ 1..n. Notice, that

the types T jµ were obtained from the session type S (eq. (17a)), where S

74

Chapter 4. Metatheory

contains !lµ
(
T 1
µ , . . . , T nµ

)
.Sµ. Now, by the premise of [rChoice2],

since ej = vj, then

∅ `exp vj : T jµ for all j ∈ 1..n (17f)

By the Value Typing Lemma, we also know that ∅ `exp :lµ : atom. Using

this latter information and eq. (17f) in [tTuple] and [tExpression], we

get the required result:

∅ `exp :lµ : atom ∀j ∈ 1..n ∅ `exp vj : T jµ
[tTuple]

∅ `exp {:lµ, v1, . . . , vn} : {atom, T 1
µ , . . . , T

n
µ }

[tExpression]
∆ · ∅ `y Sµ B {:lµ, v1, . . . , vn} : T C Sµ

(17g)

Result from eq. (17g) holds as required, since after(S, α) = Sµ and

after(∆, α, S) = ∆.

[tRecKnownCall] From the rule, we know that

t = f (w, e2, . . . , en) (18a)

∅ `exp ei : Ti for ∀i ∈ 2..n (18b)

From the structure of t (eq. (18a)), term transitions (t
α−→ t′) can be derived

using two rules, so we consider two sub-cases:

1. [rCall1] From this rule, we know that t = f (v1, . . . , vk−1, ek, . . . , en),

α = τ , w = v1 and

t′ = f (v1, . . . , vk−1, e
′
k, . . . , en)

ek → e′k (18c)

Applying eq. (18b) (for i = k) and eq. (18c) to the Preservation

(Expressions) Lemma, we get

∅ `exp e
′
k : Tk (18d)

By eqs. (18b) and (18d) and [tRecKnownCall], we get

∆ · ∅ `w S B f (v1, . . . , vk−1, e
′
k, . . . , en) : T C S ′ (18e)

eq. (18e) holds since after(S, τ) = S and v1 = w.

75

Chapter 4. Metatheory

2. [rCall2] From the rule, we know that α = f/n, w = ι and

t = f (ι, v2, . . . , vn) (18f)

t′ = t̄ [ι/y] [v2, . . . , vn/x2, . . . , xn]

Σ (f/n) = Ω where

Ω.return type = T

Ω.param types = T2, . . . , Tn

(18g)

∆ (f/n) = S (18h)

Since all known functions (i.e., f/n ∈ dom(∆)) by eq. (18h)) are already

typechecked once before, then from the function information environment

(i.e., Σ) and eq. (18g), we can assume that

∆ · Γ′ `y S B t̄ : T C end (18i)

where Γ′ contains only the mapping from the parameter names to their

types, i.e., Γ′ = (y : pid, x2 : T2, . . . , xn : Tn) – our aim is to change Γ′ to

∅. This assumption in eq. (18i) is possible since a well-formed Σ dictates

that the only free variables in a function body are the parameter types, or

formally, for all f/n ∈ dom(Σ), we have

fv
(
Σ(f/n).body

)
\
(
Σ(f/n).params ∪ {Σ(f/n).dual}

)
= ∅

By eq. (18f) and Value Typing Lemma we know that ∅ `exp ι : pid.

Applying this information and eq. (18i) to the Substitution Lemma results

in

∆ · (x2 : T2, . . . , xn : Tn) `y[ι/y] S B t̄ [ι/y] : T C end (18j)

where by the Variable Substitution Definition, y [ι/y] = ι = w.

Applying the Substitution Lemma multiple times to eqs. (18b) and (18j),

results in

∆ · ∅ `w S B t̄ [ι/y] [v2, . . . , vn/x2, . . . , xn] : T C end (18k)

as required, since after(S, f/n) = S and S ′ = end. Also,

after(∆, f/n, S) = (∆, f/n : S), but from eq. (18h), f/n is already mapped

to S in the session typing environment, therefore (∆, f/n : S) = ∆, as

76

Chapter 4. Metatheory

needed.

[tRecUnknownCall] From the rule, we know

t = f (w, e2, , . . . , en) (19a)

∅ `exp ei : Ti for all i ∈ 2..n (19b)

From the premise we also know that

(∆, f/n : S) ·
(
y : pid, x̃ : T̃

)
`y S B t̄ : T C S ′ where x̃, T̃ , t̄, T and y are

obtained from the function information environment(i.e.,Σ)(19c)

From the structure of t (eq. (19a)), term transitions (t
α−→ t′) can be derived

using two rules, so we consider two sub-cases:

1. [rCall1] From this rule we know that α = τ , and

t′ = f (v1, . . . , vk−1, e
′
k, . . . , en)

ek → e′k (19d)

Applying eq. (19b) (for i = j) and eq. (19d) to the Preservation

(Expressions) Lemma, we get

∅ `exp e
′
j : Tj (19e)

Using eq. (19b) and eq. (19e) in the rule [tRecUnknownCall], results

in

∆ · ∅ `w S B f (v1, . . . , vk−1, e
′
k, . . . , en) : T C S ′

This holds since after(S, τ) = S and after(∆, τ, S) = ∆.

2. [rCall2] From the rule, we know that α = f/n and

t = f (ι, v2, . . . , vn) (19f)

w = ι (19g)

t′ = t̄ [ι/y] [v2, . . . , vn/x2, . . . , xn]

By eq. (19f) and the Value Typing Lemma we know that ∅ `exp ι : pid.

Applying this information and eq. (19c) to the Substitution Lemma results

77

Chapter 4. Metatheory

in

(∆, f/n : S) ·
(
x̃ : T̃

)
`y[ι/y] S B t̄ [ι/y] : T C S ′ (19h)

where by the Variable Substitution Definition and eq. (19g), y [ι/y] = ι = w.

Applying the Substitution Lemma repeatedly to eqs. (19b) and (19h),

results in

(∆, f/n : S) · ∅ `w S B t̄ [ι/y] [v2, . . . , vn/x2, . . . , xn] : T C S ′

where after(S, f/n) = S and after(∆, f/n, S) = (∆, f/n : S), as required.

[tCase] From the rule, we know that for some type U ,

t = case e do (pi → ti)i∈Iend (20a)

∅ `exp e : U (20b)

∀i ∈ I

{`wpat pi : U B Γ′i (20c)

∆ · Γ′i `w S B ti : T C S ′ (20d)

By eq. (20a), term reduction, t
α−→ t′, can be derived using two rules, so we

consider two sub-cases:

1. [rCase1] From the rule we know that t′ = case e′ do (pi → ti)i∈Iend, and

from the premise we know that

e→ e′ (20e)

By eqs. (20b) and (20e) and the Preservation (Expressions) Lemma, we

get

∅ `exp e
′ : U (20f)

Using eqs. (20c), (20d), (20f), and [tCase], we get

∆ · ∅ `w S B case e′ do (pi → ti)i∈Iend : T C S ′

which holds as expected since after(S, τ) = S and after(∆, τ, S) = ∆.

2. [rCase2] From the rule, we know that t = case v do (pi → ti)i∈Iend,

78

Chapter 4. Metatheory

e = v and for some j ∈ I,

match(pj, v) = σ where σ = [v1, . . . , vn/x1, . . . , xn] (20g)

t′ = tjσ (20h)

By eqs. (20b), (20c) and (20g) and lemma 15, we know that Γ′j = x1 :

T1, . . . , xn : Tn and

∅ `exp vk : Tk for all k ∈ 1..n (20i)

Then, by repeatedly applying the Substitution Lemma to eq. (20i), (20d

for i = j), we get

∆ · ∅ `w S B tjσ : T C S ′

This holds since after(S, τ) = S and after(∆, τ, S) = ∆. �

4.4 Conclusion

We have shown that the session typing system created for a subset of Elixir

from Chapter 3 obeys the session fidelity property. Meaning, that a well-typed

program will always remain well-typed when transitioning. More importantly,

in the context of session types, a public function decorated with a session type

(i.e., uses @session or @dual annotations) will perform the actions depicted

by the session type, and fully consume it if the function terminates. The goal

of Objective O1 was to provide a solid formal foundation in the form of a type

system. This objective was partially addressed in Chapter 3 where a (session) type

system was introduced. Throughout this chapter, we fulfilled the remaining part

of Objective O1 by formally analysing the type system. Further formal analyses

can be carried out, such as the proving the progress property, which go beyond the

scope of this study.

79

5. Elixir Implementation

In Chapter 3, we presented a session type system for Elixir. In this chapter, we

realise the type system as a proof-of-concept implementation, where we create a

type checker for the Elixir language, called ElixirST. Its source code and relevant

documentation can be found at

https://github.com/gertab/ElixirST

We also take a look at how this tool fits within the Elixir compilation pipeline,

and see how it maps to the formal model. Then, a case study that applies ElixirST

to a different scenario is illustrated.

This chapter attempts to fulfil Objective O2. This objective requires that a

session type implementation is developed in Elixir, that mirrors the type system

formalised in Chapter 3. Furthermore, this objective also demands that session

types should be added in a way that is not disruptive to the developer’s workflow,

thus developers will be allowed to keep using established idioms and patterns from

the original language. Throughout this chapter, we will evaluate if this objective

is reached. It depends on whether practical concurrency issues are flagged (and

the developer is warned) at compile-time. It also depends on how well ElixirST

integrates within the existing Elixir workflow.

80

https://github.com/gertab/ElixirST

Chapter 5. Elixir Implementation

Elixir Source
Code + Session
Type Annotations

Elixir AST

Elixir AST with
Macros Expanded

Erlang AFCore ErlangBEAM Bytecode

ElixirST type checker

Figure 5.1: Stages of Elixir compilation along with the session type implementation
(in red)

5.1 Integration within Elixir

In order to achieve Objective O2, we build ElixirST using existing Elixir

mechanisms, which preserves the original Elixir language and its compiler. We

do so by exploiting the compilation pipeline, where we inject our session typing

analysis as an additional layer within this pipeline.

The compilation pipeline for Elixir is shown in Figure 5.1 (black arrows), which

transforms the Elixir source code into executable BEAM bytecode. As a first

step, Elixir source code is parsed into an Abstract Syntax Tree (AST). Then, since

Elixir is a macro-full language (i.e., a lot of the features provided are macros),

all the non-special form1 macros are expanded into special form macros. This

new expanded AST is converted into Erlang Abstract Format, and simplified

further into Core Erlang. The final step involves compiling the Core Erlang code

into BEAM bytecode. This BEAM bytecode is split into different ‘chunks’ that

contain several crucial information. First of all, there is a chunk that contains

the executable format, which is used to execute programs on the BEAM (Erlang

VM). Moreover, in the debug info chunk,2 we can find the expanded Elixir AST,

obtained earlier, which we will then use to typecheck.

Our implementation is embedded within this compilation pipeline (Figure 5.1,

1Special form macros are the basic building blocks of the Elixir language, which cannot be
expanded further.

2https://github.com/erlang/otp/pull/1367

81

https://github.com/erlang/otp/pull/1367

Chapter 5. Elixir Implementation

red). Modules can be extended by linking other modules using the use macro.3 We

use this feature, whereby the ElixirST typechecker can be injected to any existing

Elixir module using this macro, i.e., use ElixirST . Following this, ElixirST

extends existing modules by offering our two new annotations: @session and

@dual . These are used to decorate functions with a session type.

@session "X = !Ping().?Pong().X"

...

@dual "X" # Equivalent to X’ = ?Ping().!Pong().X’

The @session annotation is used to decorate functions with labelled session types

directly. The @dual annotation takes a session type label, and computes its dual

session type (using Definition 3.1).

To use this newly appended information, we save the session types inside the

aforementioned debug info chunk of the BEAM bytecode. This is done using

Elixir’s on_definition compile-time hook. At this point, the BEAM bytecode

contains all the information needed for analysis (i.e., the function ASTs and their

session types). Therefore, we use another hook (called after compile) to initiate

the analysis. First, the session types are converted from strings to usable structures,

by creating a lexer and a parser (using the Erlang modules leex4 and yecc,5

respectively) based on the syntax defined in Figure 3.2. Finally, all session-typed

functions are typechecked by performing a depth-first, pre-order traversal of their

AST (facilitated by Elixir’s prewalk 6 function), while following the typechecking

rules defined in Section 3.3.

ElixirST integrates well within VSCode, which is a common source-code editor.

For instance, the ElixirLS language server extension in VSCode compiles Elixir

code automatically, and in the process it picks up any error messages that ElixirST

generates during typechecking, displaying them in clear view to the developer.

3https://elixir-lang.org/getting-started/alias-require-and-import.html#use
4https://erlang.org/doc/man/leex.html
5https://erlang.org/doc/man/yecc.html
6https://hexdocs.pm/elixir/1.12/Macro.html#prewalk/2

82

https://elixir-lang.org/getting-started/alias-require-and-import.html#use
https://erlang.org/doc/man/leex.html
https://erlang.org/doc/man/yecc.html
https://hexdocs.pm/elixir/1.12/Macro.html#prewalk/2

Chapter 5. Elixir Implementation

Figure 5.2: Erroneous implementation (from Listing 1.2) in VSCode (running
ElixirLS)

Example 5.1. To give some insight of the usability of ElixirST, we refer to the

auction example from Listing 1.2, which had an erroneous buyer implementation.

For example, in Figure 5.2, VSCode flags this implementation as having “incorrect

payload types” on line 52, since the payload was expected to be a number but a

true value was found instead. It also cites the line number in the message indicating

where the issue originates from.

This shows that ElixirST can be used seamlessly in common development

environments (e.g., VSCode), as required in Objective O2. Furthermore, ElixirST

is platform independent, as it also works in other environments. For instance, if

Elixir code is compiled from a terminal (instead of VSCode), the error messages

produced by ElixirST will still be outputted to the developer. �

5.2 Uniting Elixir and Our Model

We now take a look at how our formal model defined in Chapter 3 maps to the

Elixir language from a practical aspect. One should note that ElixirST typechecks

programs that follow a subset of the Elixir language, as described by the syntax

in Figure 3.3. In this syntax, we require that each function is decorated with the

@spec annotation, explicitly defining the function specifications. This annotation

is already provided by the Elixir language, which is used for code documentation

83

Chapter 5. Elixir Implementation

(by adding type definitions), and is also used by the Dialyzer [14]. The Dialyzer

uses success types to ascertain that the function parameter and return types follow

the specifications provided by @spec . Separate from the Dialyzer, we exploit the

information from the @spec annotation to obtain the parameter and return types

of all functions. This allows ElixirST to be able to statically typecheck that terms

have the correct expression types.

Example 5.2. In Listing 1.1, a buyer function was defined which takes two

parameters: auctioneer pid and amount, as follows:

@spec buyer(pid, number) :: atom

def buyer(auctioneer_pid, amount) do ... end

Then, we use the function specifications (i.e., @spec buyer...) to link the

parameter names to their types. In this case, the auctioneer pid variable has

type pid, while the amount variable has type number. Finally, the function buyer

returns an atom when it terminates. �

Another concept that we have to consider is how processes are created. The

Actor Model Definition (from Section 2.3) dictates that processes can spawn other

processes. Our design takes a restricted approach to this definition, since we

are considering interactions involving only two parties rather than any number

of concurrent parties. To do so, ElixirST provides a procedure that can be used to

define new processes, which is abstracted through a custom spawn function. This

function spawns two session-typed processes that follow their respective session

type endpoint. The spawn function (Listing 5.1) takes two pairs of parameters:

a function reference and the values to initiate their parameters (repeated for the

two functions being spawned). The parameter values should exclude the first one,

since the first parameter is reserved for the pid of the dual process (as defined in

Figure 3.3) – this pid is set dynamically by the spawn function. This function is

defined in Listing 5.1.

84

Chapter 5. Elixir Implementation

1 def spawn(leftFn, left_args, rightFn, right_args)

2 when is_function(leftFn) and is_function(rightFn) do

3 left_pid =

4 spawn(fn ->

5 receive do

6 {:pid, right_pid} ->

7 apply(leftFn, [right_pid | left_args])

8 end

9 end)

10
11 right_pid =

12 spawn(fn ->

13 send(left_pid, {:pid, self()})

14 apply(rightFn, [left_pid | right_args])

15 end)

16
17 {left_pid, right_pid}

18 end

Listing 5.1: ElixirST’s spawn function

The spawn function’s workflow is shown in Figure 5.3, where two functions

(called leftFn and rightFn) are spawned. The procedure starts by spawning one

‘empty’ process, called pre-left (with pid left pid, as shown in lines 3–9). Then,

another function is spawned, called pre-right (with pid right pid, as shown in

lines 11–15), where it is passed the left pid value. Then, pre-right sends its pid

address (right pid) to the pre-left process (lines 5 and 13), thus, both processes

become aware of each other’s pid . Finally, each process calls its respective function

(lines 7 and 14), thus continuing as leftFn and rightFn, respectively.

pre-left

pre-right rightFn(left pid ,
arg2 ,
arg3 , . . .)

leftFn (right pid ,
arg2 ,
arg3 , . . .)

left_pid right_pid

. . .

. . .

Figure 5.3: Spawning two processes (green boxes represent spawned concurrent
processes)

85

Chapter 5. Elixir Implementation

Example 5.3. The Auction module from Listing 1.3 contains two functions: a

buyer and an auctioneer. The interaction between these two parties can be

started using ElixirST’s spawn function, as follows.

{buyer_pid, auctioneer_pid} =

ElixirST.spawn(&buyer/2, [50], &auctioneer/2, [200])

This call results in two processes being spawned, where the buyer function is

initiated with the parameter value 50, and the auctioneer function is initiated

with the parameter value 200. This function call immediately returns a tuple

containing the pid of both processes. �

5.3 Flexibility

In this section we discuss the flexibility of our solution, thus further satisfying

Objective O2. We show that our solution, provided via ElixirST, is not very intrusive

to the develop’s workflow, since existing design patterns and idioms can still be

used. We show this concretely by discussing two common features, as shown in

Figures 5.4 and 5.5.

Consider Figure 5.4, where there are two different implementations that

achieve the same result, i.e., first a message containing :A or :B is received,

and then a message containing :C is sent to a process with pid p. Although

both implementations are valid, the snippet on the right is more efficient and

1 receive do

2 {:A} -> send(p, {:C})
3 :ok

4 {:B} -> send(p, {:C})
5 :ok

6 end

1 receive do

2 {:A} ->

3 :ok

4 {:B} ->

5 :ok

6 end

7 send(p, {:C})

Figure 5.4: An Elixir receive snippet, along with its equivalent using the fork-join
concept (right)

86

Chapter 5. Elixir Implementation

maintainable, since the send statement is written only once rather than duplicated

as shown in the snippet on the left-hand side. This is possible through the use of

the fork-join pattern.

In Figure 5.4, both snippets follow the session type &
{

?A().!C().end, ?B().!C().end
}

,

which has a common continuation type !C().end. Several type systems [46] force pro-

grams with a common continuation to be structured in a nested fashion, as shown

on the left-hand side of Figure 5.4. However, for efficiency and maintainability,

the snippet on the right-hand side is more desirable. ElixirST handles this, where

the use of the fork-join pattern is allowed. This is a simple example, where we

only considered a single send statement. However, in larger programs, this could

translate to a huge block of code, where the fork-join pattern helps to prevent

duplicated code.

Another aspect that we consider is the flexibility that macros offer in Elixir.

Our design in Section 3.2 focuses on a small part of the language. However, when

Elixir is used in practice, a larger range of constructs are typically used by the

developer. We show how our type system (Chapter 3), despite typechecking a

small macro language, still accepts a much larger language fragment.

For instance, in Listing 1.1 we made use of an if construct which is not part of

the syntax defined in Figure 3.3. This is possible through a powerful native feature

in Elixir, called metaprogramming. In Section 5.1, we saw that Elixir is a macro-full

language whereby, during the first part of the compilation, all macros are eliminated

1 if value < 100 do

2 send(auctioneer, {:continue})

3 buyer(auctioneer, amount + 10)

4 else

5 send(auctioneer, {:quit})

6 :ok

7 end

1 case(value < 100) do

2 false ->

3 :erlang.send(auctioneer, {:quit})

4 :ok

5 true ->

6 :erlang.send(auctioneer, {:continue})

7 buyer(auctioneer, amount + 10)

8 end

Figure 5.5: Snippet from Listing 1.1 in normal form (left), along its equivalent with
expanded macros (right)

87

Chapter 5. Elixir Implementation

through expansion. This allows us to only consider a small number of constructs.

As a result, we get a number of features for free, including existing constructs

(e.g., unless construct, pipe operator) and custom features. For instance, with

Elixir’s defmacro [40], we can define a custom Domain-Specific Language (DSL),

which would still be typecheckable by our type system. Concretely, as shown in

Figure 5.5, an if construct is expanded into an equivalent case construct, so

explicit typechecking for an if statement is not needed. This shows that ElixirST

accepts a more expressive language than the one typechecked in Chapter 3.

In this section, we have shown that ElixirST works with common patterns (e.g.,

fork-join) and a large fragment of the Elixir language (via macros). This allows

developers to program the way they are used to, with ElixirST performing checks in

the background. Thus, ElixirST’s flexibility helps towards achieving Objective O2.

5.4 Improving the Type System from a Practical

Perspective

In this section we identify limitations from the type system (Chapter 3) and its

implementation that prevent us from fully achieving Objective O2. Then, we

suggest ways of improving them.

Recall the [tBranch] rule (from Figure 3.6 in Section 3.3), which is used to

process any incoming messages and match them with the branching session type.

This rule allows any messages to be received, like unsolicited ones, which are not

sent from the dual process, may end up being picked from the process’ mailbox.

This is due to the nature of actor systems in the BEAM, which allows any (external)

process to exchange messages to other processes, given they have their pid . This

may be improved by following the design proposed by Mostrous and Vasconcelos

[46], which tag individual messages within a session with a unique reference. Thus,

messages are cherry-picked from the mailbox only if they have a matching reference.

Another limitation is caused by the [tRecKnownCall] and [tRecUnknownCall]

88

Chapter 5. Elixir Implementation

1 @session "!A().!B().end"

2 def fun1(p) do

3 fun2(p)

4 send(p, {:B})

5 end

6
7 defp fun2(p) do

8 send(p, {:A})

9 end

1 @session "!A().!B().end"

2 def fun1(p) do

3 send(p, {:A})

4 fun2(p)

5 end

6
7 defp fun2(p) do

8 send(p, {:B})

9 end

Figure 5.6: An incorrect implementation for a function following the session type
!A().!B().end (left), along with an improved version (right)

rules. As explained in Section 3.3, these rules handle function calls. These rules

imply that a function call consumes all of the remaining session type until it

reaches the residual type. Consider the snippets shown in Figure 5.6, where

the functiond fun1 must follow the session type !A().!B().end. The snippet on

the left-hand side starts with a (private) function call to fun2 (line 3). Using

the [tRecUnknownCall] rule, it is assumed that fun2 follows the session type

!A().!B().end. When fun2 is executed (line 8), it is found that it follows a dif-

ferent session type (i.e., !A().end), rather than the one assumed earlier; thus this

implementation is deemed ill-typed, even though it is well-behaved. On the other

hand, the snippet on the right-hand side performs a tail-call to the private func-

tion fun2. Rule [tRecUnknownCall] assumes that its session type is !B().end,

which matches the behaviour in the function’s body (line 8), deeming it well-typed.

Due to this limitation, function calls must fully exhaust the remaining session

types, and thus, they cannot be followed by any dangling send or receive con-

structs. This can be improved by computing the proper session types of unknown

functions (in [tRecUnknownCall]), or compute the residual session type (in

[tRecKnownCall]), using a sort of session type subtraction, although recursion

makes this far from trivial.

The final design that we discuss is the branch types within the rules [tBranch]

and [tCase]. The rules dictate that each branch (or case) has a common residual

session type. Moreover, they also require that each branch (or case) must have a

89

Chapter 5. Elixir Implementation

1 if true do

2 :ok

3 else

4 2

5 end

1 if true do

2 :ok

3 else

4 :ko

5 end

Figure 5.7: Snippet showing an incorrect (left) and a correct (right) way of using
multiple branches

common expression type T , which further restricts the implementation flexibility.

For instance, Figure 5.7 shows a correct and incorrect implementation for an if

statement. The snippet on the left-hand side is incorrect since the two cases (in

lines 2 and 4) have a different type (i.e., atom and number, respectively). The

snippet on the right-hand side shows a revised implementation, where both cases

end with a common same type (i.e., atom). One avenue that could be used to

ease this limitation would be to extend the expression types to use union and

intersection types, as formalised by Castagna [47].

5.5 Case Study

In the previous sections, we discussed how ElixirST integrates within Elixir with

respect to specific language constructs. In this section we take a different approach,

where we present an existing external third-party service, and analyse whether

ElixirST is able to be used within a module which interacts with this external

service.

Flight System Using a Third-Party API

To fulfil Objective O2, ElixirST must work in real-world applications. To see if

this can be achieved, we build an Elixir application that interacts with a third-party

flight service API, called Duffel [48]. Duffel offers a real-time flight selling service,

where flights can be fetched and booked via a REST application programming

interface (API).

90

Chapter 5. Elixir Implementation

Client Gateway
Duffel

Flight Server

Elixir ecosystem – FlightSystem

HTTP messages

Sclient

Third-Party

Figure 5.8: Interactions with Duffel API

The application is built as an Elixir module, called FlightSystem, which

interacts with the Duffel Flight Server, as shown in Figure 5.8. It consists of a

client which can request to book flights from the Duffel Server. This server can

only accept HTTP messages (e.g., GET or POST request), so we use a gateway

which acts as a middleman between the client and the third-party server.

From the Duffel API documentation,7 we can get a list of API calls that can be

made, along with their details. Although each call can be invoked separately, their

order is not trivial and certain calls can only be invoked after some requirements

have been met. Taking a concrete example, the Order API8 states:

“Once you have searched for flights by creating an offer request, and

you have chosen which offer you want to book, you will then want to

create an order.”

From this, we realise that before invoking the Order API, we have to get the

updated list of offers using the Offer Requests API. Taking a deeper look at the

documentation reveals a form of hierarchy of calls that need to be made in order

to book a flight. So, we formalise this behaviour as a session type, Sclient, which

describes the least amount of interactions that need to be made by a client in order

to search, browse, and finally, book a flight.

7https://duffel.com/docs/api/overview/welcome
8https://duffel.com/docs/api/orders/schema

91

https://duffel.com/docs/api/overview/welcome
https://duffel.com/docs/api/orders/schema

Chapter 5. Elixir Implementation

Sclient = ⊕

!request

origin: binary, destination: binary,

dep date: binary, class: atom, pass no: number

 .Soffers,

!cancel()

Soffers = rec Y .&

?offer

offer no: number, total amount: number,

currency: binary, duration: number,

stops: number, segments: binary

 .Sdetails,

?error(binary).Sclient

Sdetails = ⊕

!more details().&

?details(. . .).⊕

!make booking(. . .).

&{?ok(. . .), ?error(binary)},

!cancel()

 ,

?error(binary)

,

!reject().Y

For clarity, Sclient is split in two: Soffers and Sdetails. Furthermore, we add

labels to each payload type to make it more apparent what data needs to be

transferred – labels are also allowed in ElixirST, given that labels are only used

for decorative purposes. We take a brief look at how the client can book a flight.

The interaction starts with the client making request to get the available flights

(Sclient). By glancing on Sclient, one can get more information on what the client

needs to include the request details, such as the origin and destination locations.

Note that, we use the binary type, which is the type for strings in Elixir. Then, the

client starts receiving (and rejecting) one offer at a time, until the client decides to

take up an offer (Soffers).

To learn more about the flight offer, the client sends a request to get more details

(e.g., operating airline and updated price), and awaits the results (Sdetails). Once

the details are received, the client can decide to either cancel the order, or book the

flight. In case of the latter, the booking will be finalised after the client receives

back a confirmation code. Throughout this interaction, the server may reply with

an error message, which the client also needs to handle (i.e., ?error(binary)).

92

Chapter 5. Elixir Implementation

1 defmodule FlightSystem do

2 use ElixirST

3
4 @session "S_client = +{!request(origin: binary, destination: binary...}"

5 @spec client(g_pid, binary, binary, binary, atom, number) :: :ok

6 def client(g_pid, origin, destination, dep_date, class, pas_no) do

7 send(g_pid, {:request, origin, destination, dep_date, class, pas_no})

8 IO.puts("Sending request for a flight from #{origin} to...")

9 IO.puts("Waiting for a response from the server...")

10
11 consume_offer(g_pid)

12 end

13
14 @spec consume_offer(pid) :: atom

15 defp consume_offer(g_pid) do

16 receive do

17 {:offer, offer_no, total_amount, currency, dur, stops, segments} ->

18 IO.puts("Offer ##{offer_no}: \n#{currency}#{total_amount}...")

19 accept? = IO.gets("Accept offer ##{offer_no}? y/n: ")

20
21 case accept? do

22 "y\n" -> send(g_pid, {:more_details})

23 IO.puts("Requesting updated details for offer...")

24 ...

25 _ -> send(g_pid, {:reject})

26 consume_offer(g_pid)

27 end

28
29 {:error, message} -> send(pid, {:cancel})

30 end

31 end

32 end

Listing 5.2: Session-typed snippet of a flight system written in Elixir

This behaviour formalised by Sclient is applied in the module FlightSystem,

which is shown partly in Listing 5.2. FlightSystem contains a public function

client, a private function consume offer, and an omitted public function

gateway. The client function is annotated with the session type Sclient, thus

ElixirST ascertains that the client follows the expected behaviour. The client

function sends a message containing :request and then it calls the private function

consume offer. This latter function follows the remaining actions in the session

type, i.e., Soffers. The dual part of the interaction, the gateway function, should

follow the dual session type, Sclient. This is not enforced, since the gateway

93

Chapter 5. Elixir Implementation

function goes beyond the syntax defined in Figure 3.3 (e.g., uses other modules

to parse JSON responses) which are not defined by our type system in Figure 3.6.

Nevertheless, we can spawn both public functions using our spawn function, as

follows:

ElixirST.spawn(&FlightSystem.client/6,

["MLA", "CDG", "2022-11-24", :economy, 2],

&FlightSystem.gateway/1, [])

To get an insight of what the processes are doing, the buyer and gateway

functions output their current state using IO.puts. This output is shown below,

where the client makes a request to book a flight from Malta (MLA) to Paris (CDG)

and accepts the first offer.

>> Sending request for a flight from MLA to CDG on 2022-11-24 for 2 passengers.

>> Waiting for a response from the server...

>> Offer #1:

>> EUR1300.07 (duration: 03:03) Itinerary (0 stops): Iberia IB3167:

>> Malta (MLA) -> Paris (CDG)

>> Accept offer #1? y/n: y

>> Requesting updated details for offer #1

>> Updated details for offer #1 (2 passenger/s):

>> EUR1300.07 (duration: 03:03) Itinerary (0 stops): Iberia IB3167:

>> Malta (MLA) -> Paris (CDG)

>> Departing at 2022-11-24T23:00:00

>> Accepting offer #1...

>> Booking performed successfully. Reference number: HENJK4.

In this flight booking example, we showed ElixirST’s flexibility and practicality,

by successfully integrating it within a system that uses a third-party service. We

started by extracting the interaction protocols from the Duffel documentations,

94

Chapter 5. Elixir Implementation

which were left implicit throughout the textual documentation. Even though the

interactions were rather complex, we managed to formalise them as the session type

Sclient, which was then used to verify the client side of the interaction using ElixirST.

As interactions become more complex, the chance of making a mistake in the

implementation increases, so Sclient helps in identifying these errors. Furthermore,

the protocol also becomes more complex to write, so in the future we plan to use a

specialised choreography programming language, such as Scribble [49], which can

make protocol definitions simpler.

We encountered a limitation in this case study, where the gateway process was

left unverified, leaving it susceptible to behavioural issues. To fix this, we can

expand our type system to accept parts which do not have a known session type

at compile-time, by using either gradual session types [50] to verify it statically,

or else dynamically, using a runtime monitor on the unverified part, similar to the

work by Bartolo Burlò et al. [25].

Remark. The flight booking case study provided an unbiased view showing

ElixirST’s practicality when applied in a real-world example. However, in

Appendix C we present a simple case study where both sides of an interaction are

statically verified, by building a ‘counter system’. �

5.6 Discussion

To guarantee its correctness, ElixirST has been developed alongside unit tests.

The tests in ElixirST cover around 60.5% of the Elixir code – this figure was

obtained using the ExCoveralls tool. Although this coverage leaves a significant

portion untested, we further ascertained ElixirST’s correctness from a formal aspect.

ElixirST is based on the type system from Chapter 3, which has been analysed

thoroughly in Chapter 4, where certain properties were proven.

ElixirST was developed to be minimally disruptive in the developer’s workflow,

while being informative at the same time. This was achieved by providing the

95

Chapter 5. Elixir Implementation

ability to decorate existing Elixir functions with a session type specification, using

annotation. This information is then used to verify the functions’ correctness

via typechecking, all of which happens transparently in the background during

compilation. Moreover, as shown in Figure 5.2, our implementation integrates

well within modern source-code editors (e.g., VSCode), where issues are flagged

immediately during development.

5.7 Conclusion

In this chapter, we implemented the type system from Chapter 3 as a proof-of-

concept type checker, called ElixirST. Objective O2 was addressed by showing

that ElixirST works within an existing development environment (e.g., VSCode)

as shown in Example 5.1, where erroneous implementations that do not follow

a session type, were flagged automatically. Furthermore, we showed that the

tool is not intrusive to the developer’s workflow since the language accepted by

ElixirST is quite expressive and certain existing development patterns are allowed.

We also showed that ElixirST can be used in practice, via the case study in

Section 5.5. However, some limitations became apparent since we could not

verify the whole interaction in the case study, which prevented us from completely

fulfilling Objective O2.

ElixirST gives one avenue to statically check concurrent software. As concurrent

software becomes more widely implemented, we anticipate that the need for

structured interactions also increases. Concretely, we envisage that a developer

tasked with the creation of an Elixir module, will not just be given the public

function specifications, but also an interaction protocol (as a session type) that

each function must follow. Then, the developer can implement the functions at his

discretion, making use of any private functions needed, as long as the session types

are observed.

In the following chapter, we compare our type checker with other

implementations.

96

6. Related Work

Elixir offers limited tools when it comes to correctness guarantees. External tools,

for instance, model checkers [51] or runtime verifiers [52] which are built for Erlang,

but may be migrated and used in the Elixir language. However, in practice

developers tend to rely on test-driven tools, such as Elixir’s unit testing framework

(called ExUnit1). To our knowledge, ElixirST is the first session type checker for

the Elixir language. In this chapter, we compare this tool and its design to other

session type systems for different languages, as shown in Table 6.1.

6.1 Session Types for Actor-Based Languages

Erlang The closest work to ours was carried out by Mostrous and Vasconcelos

[46], where a static session type system was designed to discipline message-passing

for a fragment of the Core Erlang language. It works by tagging each sent message

with a unique reference, which is the used to identify it at the receiving end. This

is achieved by using correlation sets, which then allows for multiple binary sessions

to take place concurrently.

The work by Mostrous and Vasconcelos tackles session types for Core Erlang

from a theoretical perspective only, thus their algorithmic type system was not

realised as a tool. In contrast, our type system takes a more practical approach,

1https://hexdocs.pm/ex_unit/ExUnit.html

97

https://hexdocs.pm/ex_unit/ExUnit.html

Chapter 6. Related Work

Session Types Checking
Language

Concurrency via

Binary Multiparty Static Dynamic Actors Channels

Mostrous and Vasconcelos [46] ! ! Erlang !

Fowler [28] ! ! Erlang !

Neykova and Yoshida [53, 54] ! ! Python !

Scalas and Yoshida [20] ! ! Scala ! !

Scalas et al. [55, 56] ! ! Dotty ! !

Bartolo Burlò et al. [25] ! ! Scala !

Harvey et al. [45] ! ! Ensemble !

Pucella and Tov [57] ! ! Haskell !

Kokke and Dardha [58] ! ! Haskell !

Padovani [21] ! ! OCaml !

Melgratti and Padovani [27] ! ! OCaml !

Imai et al. [22] ! ! OCaml !

Imai et al. [59] ! ! OCaml !

Jespersen et al. [60] ! ! Rust !

Kokke [23] ! ! Rust !

Lagaillardie et al. [24] ! ! Rust !

ElixirST " " Elixir "

Table 6.1: Comparison of our work with other implementations

where it was implemented as a type checker. It also accepts a more expressive

language. Specifically, our design allows: variable bindings (e.g., in let statements),

expressions (e.g., addition operation), inductive types (e.g., tuples and lists),

infinite computation via recursion and explicit protocol definition.

A concrete session type implementation for the Erlang language was created

by Fowler [28]. This implementation uses multiparty session types (MPST) [61],

which allows more than two parties to communicate in a single interaction. The

MPST protocols are written using the Scribble protocol language [49], which

converts one protocol into smaller protocols which each party should follow. The

implementation by Fowler uses these protocols to dynamically verify the actor

communication in Erlang, using runtime monitors. This allows for more flexibility,

since processes use Erlang/OTP behaviours (e.g., gen server, which structures

actors in a hierarchical manner), which are then verified with respect to a session

98

https://github.com/SimonJF/monitored-session-erlang/
https://github.com/rumineykova/sessionactors
https://github.com/alcestes/lchannels
https://github.com/alcestes/effpi
https://github.com/chrisbartoloburlo/stmonitor
http://www.dcs.gla.ac.uk/~ornela/publications/HFDG21-Artifact.pdf
https://hackage.haskell.org/package/simple-sessions
https://github.com/wenkokke/priority-sesh
https://github.com/boystrange/FuSe
https://dl.acm.org/doi/abs/10.1145/3110279
https://github.com/keigoi/session-ocaml
https://github.com/keigoi/ocaml-mpst/
https://github.com/Munksgaard/session-types
https://github.com/wenkokke/sesh
https://github.com/NicolasLagaillardie/mpst_rust_github
https://github.com/gertab/ElixirST

Chapter 6. Related Work

type. This implementation also accounts for Erlang’s let it crash philosophy, where

processes may fail while executing. Fowler [28] extends the work by Neykova and

Yoshida [53]. In contrast, our work, albeit built on a more limited scale (due to

Elixir’s dynamic nature), provides static guarantees, where issues are flagged at

pre-deployment stages.

Python Neykova and Yoshida [53, 54] presented one of the earliest multiparty

session type implementations for a dynamically typed language, in this case Python

(using the Cell actor framework). Similar to [28], protocols are defined using

the Scribble language, and runtime monitors are used to dynamically check the

interactions. Python annotations are used to assign protocols (i.e., @protocol)

and roles (i.e., @role) to Python classes and functions, respectively. This is similar

to our work, where we use annotations (e.g., the @session , @dual).

Scala Scalas and Yoshida [20] applied binary session types to the Scala language,

where session types are abstracted as Scala classes. Then, protocol fidelity is

verified using Scala’s compiler, which will complain if the implementations do

not follow the specified protocols. This work checks for linearity at runtime,

i.e., an implementation has to fully exhaust a protocol exactly once. Another

implementation was done by Scalas et al. [55, 56], where session types were added

in Scala 3 (called Dotty). This design utilises dependent function types to verify

programs at compile-time. It uses model checking to ensure that the protocols are

followed.

Bartolo Burlò et al. [25] applied session types in a hybrid setting in Scala. This

work typechecks one part of an interaction statically using the work by Scalas

and Yoshida [20], and checks the other side of the interaction dynamically. The

latter is achieved by synthesising runtime monitors from a given session type. This

allows one interacting party to behave as a ‘black-box’ where its implementation

may not be statically checked. This concept is an ideal extension of our work;

for instance, in the case study of Section 5.5, one side of the interaction was left

99

Chapter 6. Related Work

unverified; using Bartolo Burlò et al.’s hybrid setting would allow us to attach a

runtime monitor to check the behaviour of the unverified side.

Other Actor Languages Harvey et al. [45] present a new actor-based language,

called EnsembleS, which offers session type as first-class features in the language.

EnsembleS statically verifies implementations with respect to session types, while

still allowing for adaptation of new actors at runtime, given that the actors are

compatible with the pre-existing protocols. Thus, actors can be terminated and

discovered at runtime, while still maintaining static correctness.

An unconventional approach was taken by De’Liguoro and Padovani [62], where

they designed a type system for the processes’ mailbox directly. They introduced

a mailbox calculus which considers mailboxes as first-class citizens. Then, the

mailboxes are typechecked to ensure that the processes are free from behavioural

issues, such as deadlocks.

We can observe that from the session type systems that we discussed, a common

trend emerges. Most dynamically-typed languages are checked dynamically using

runtime monitors [28, 53, 54]. Our implementation deviates this pattern, by

applying static checking of session types for a subset of Elixir. Another exception

is [46], where Mostrous and Vasconcelos design a static type system for Core Erlang,

however, there is no implementation for it.

6.2 Session Types for Channel-Based Languages

Our work is built on Elixir, which is actor-based, however, we overview a few

implementations that use channel-based message-passing.

Haskell and OCaml One of the earliest binary session type implementations

was carried out in Haskell by Pucella and Tov [57], where they use features

available from Haskell, such as indexed parameterised monad. Another Haskell

100

Chapter 6. Related Work

implementation was done by Kokke and Dardha [58]. In this case they make use

of Linear Haskell and priorities to guarantee linearity at compile-time.

Padovani [21] create an OCaml library called FuSe, which statically verifies

binary session types. However, it checks for linearity at runtime, akin to [20].

FuSe was further extended by Melgratti and Padovani [27] to include contracts.

Contracts are assertions that are checked dynamically. In [27], contracts are written

in OCaml, which are inserted directly within the existing code, thus forming an

inline monitor that flags issues at runtime. Another OCaml implementation was

presented by Imai et al. [22] in which they check binary session types statically. This

work uses parametric polymorphism provided by the language. This project [22]

was later extended [59] to support multiparty session types, utilising global

combinators.

Rust Jespersen et al. [60] created a binary session type implementation for the

Rust language. They leverage Rust’s affine type system to ensure static checks.

However, the implementation has some limitations, e.g., branches and choices are

limited to binary options, and sessions can be unsafely dropped prematurely. In

this work, annotations (e.g., #[must use]) are also used to add further checks to

functions. This work [60] was improved by Kokke [23] by adding support for early

cancellation of sessions. This was done by utilising Exceptional GV [63], which

by design, safely handles failures via exceptions. In turn, Lagaillardie et al. [24]

extended [23] to support multiparty session types.

The approaches seen in Rust [23, 24, 60], OCaml [21, 22, 27, 59] and Haskell [57,

58] rely heavily on type-level features of the language, which are all statically typed.

As a result, these implementations do not readily apply in the Elixir language,

which is a dynamically typed language.

101

Chapter 6. Related Work

6.3 Type System for Elixir

Elixir is a dynamically typed language, so in order to statically verify the concurrent

aspect of Elixir, we also have to typecheck the functional part of the language.

Other works have attempted the latter, typically overlooking the concurrent part.

Cassola et al. [44] presented a gradual type system for Elixir. It statically

typechecks Elixir modules, using a gradual approach, where some terms may

be left with an unknown expression type. Similarly to our work, [44] uses the

@spec annotation to get the parameter types when typechecking the functional

part of Elixir. Their type system analyses the Elixir AST without the macros

expanded, which limits the flexibility of the language accepted. In contrast,

our work typechecks the AST with expanded macros, so as a result we have to

typecheck less constructs while accepting more for free, e.g., by typechecking the

case construct, we are implicitly accepting the if and unless constructs since

these are expanded into a case construct.

Although few tools attempt to statically typecheck the Elixir language, there

were some attempts for other BEAM languages. For example, Harrison [64]

statically checks Core Erlang for errors within the messages being transferred.

For instance, it checks that each send statement matches a received statement.

However, it takes a more fine-grained approach, since it does not verify the messages

with respect to a general protocol.

Gradual types are also used by the Gradualizer [65] type checker. Gradualizer

analyses Erlang programs and uses different forms of type abstractions to ours,

such as intersection types. Recently, WhatsApp developed eqWAlizer [66] which is

a type checker for Erlang. Similar to ElixirST, it analyses each function within a

module separately. In contrast to ElixirST, neither of these tools utilise behavioural

types. Moreover, to the best of our knowledge, neither of these tools offer a formal

analysis of the typechecking employed.

Another implementation by Rajendrakumar and Bieniusa [67] typecheck Erlang

using a bidirectional type system, where typechecking and type inference is

102

Chapter 6. Related Work

performed simultaneously. This work, similar to other Erlang static type

systems [68, 69], analyses the functional part of Erlang programs, omitting any

concurrency checks.

In the following chapter, we summarise the conclusion of this study.

103

7. Conclusion

In this study we presented an approach of how binary session types could be used

to analyse the concurrent part of the existing Elixir language. The integration of

session types in Elixir was first presented in Chapter 3 through a formal type system

and analysed formally in Chapter 4. Then, the type system was implemented as

a practical static type checker in Chapter 5. The results obtained from this study

will in this conclusion be compared with the general objectives of Section 1.1.

The goal of Objective O1 was to provide a formal foundation for Elixir programs

in the form of a type system and operational semantics, where we ensure that

concurrent interactions in Elixir follow a certain protocol. In Chapter 3, we

presented a subset of the Elixir language which was small enough to be formally

analysed, but flexible and usable in practice too. A type system was built for

this core language in Section 3.3 to typecheck public functions in a module.

During typechecking, we ascertain that they follow precisely their declared protocol,

expressed via session types. This type system has been further validated in

Chapter 4, where we proved the Session Fidelity Theorem. This theorem guarantees

that a well-typed program remains free from certain behavioural issues because

they continue to follow their prescribed protocol during execution. Concretely,

communication mismatches and certain kinds of deadlocks do not arise at runtime.

The goal of Objective O2 was to realise the aforementioned formal type system

as a practical tool, in a non-intrusive manner for the developer. We achieved

104

Chapter 7. Conclusion

this to a certain degree in Chapter 5 by building a tool, called ElixirST, which is

able to statically typecheck public functions with respect to their session types.

We focused on integrating this tool seamlessly within the developer’s workflow,

by reusing existing Elixir patterns, such as the fork-join pattern, described in

Section 5.3. Concretely, ElixirST allows public functions in Elixir programs to be

decorated with session types, using the @session or @dual annotations. By the

case study in Section 5.5, we showed that ElixirST is flexible enough to be used

in practice. However, it has some limitations that prevents us from fully reaching

Objective O2. Specifically, one side of the interaction (in the case study) could not

be statically checked due to the nature of the type system presented in Chapter 3.

The aim of this study was to improve the development of concurrent code,

specifically within the Elixir language. To analyse this aim, we discussed the results

in relation to the objectives, where Objective O1 was reached, and Objective O2

was mostly fulfilled, other than the aforementioned limitations. Thus, we conclude

that our tool, in line with the aim, does help in improving the development of

concurrent Elixir code, by typechecking Elixir functions with respect to a protocol

transparently in the background.

Throughout this study, we realised the increasing importance of getting

message-passing concurrency right. An emerging practice is to use session types,

which are used to ascertain that the behaviour of concurrent programs follows some

pre-defined protocol. Several research groups and workshops [70–72] are focusing

on this area, where they attempt to bridge theoretical behavioural systems with a

practical counterpart, akin to how we structured our work.

Thanks We thank the AGERE workshop [29] and the STARDUST1 research

group [73] for their useful feedback and engaging discussions on previous iterations

of this work.

1STARDUST (Session Types for Reliable Distributed Systems) is a research group working
on integrating session types within actor systems.

105

Chapter 7. Conclusion

7.1 Future Work

Retrofitting session types in the Elixir language can be improved in a number

of ways. Given that we presented session types in a binary setting, a natural

extension would be to extend them to handle more than two concurrent parties,

using multiparty session types [61]. Moreover, we currently link session types to

individual functions within a module – these could be extended to work across, thus

being able to refer to the session types from external modules. A limitation that

we encountered in Section 5.5 was that a third-party process could not be statically

checked, leaving a vulnerability. This issue could be averted if we provide a hybrid

form of checking, akin to the work by Bartolo Burlò et al. [25], where checking

is extended to the unverified side via runtime monitors. Another aspect that we

did not consider is Erlang’s let it crash design, which handles errors by letting

processes crash — in our design if a process fails after an interaction has started, it

could cause non-deterministic results. We could account for failures by providing

exception handling, similar to the work by Fowler et al. [63]

In this study we built a static type system for a subset of Elixir, which is an

inherently dynamic language. To increase the usability of this project, ideally, the

chosen subset must be extended until is becomes close or equivalent to the full

language. Due to its dynamic properties, we may need to accept parts with an

unknown type. Gradual typing [44, 50] could be used to typecheck these untyped

parts. To typecheck more functional constructs, we need to implement more flexible

expression types, such as union, intersection and negation types, similar to the work

formalised by Castagna [47].

The last aspect that we consider is the formal analysis. Although in Chapter 4,

we proved session fidelity, we still have to prove other properties, such as

the progress property, to be able to guarantee soundness of our type system.

Furthermore, we can utilise interactive formal theorem provers (e.g., Coq [74] and

Agda [75]) to verify the correctness of the theorems.

106

References

[1] P. Gammie, “Concepts, Techniques, and Models of Computer Programming,”

J. Funct. Program., vol. 19, no. 2, pp. 254–256, 2009. doi: 10 . 1017 /

S0956796808007028.

[2] “Effective Go - The Go Programming Language,” Accessed: 25-March-2021.

[Online]. Available: https://go.dev/doc/effective_go\#sharing.

[3] K. Cox-Buday, Concurrency in Go: Tools and Techniques for Developers.

O’Reilly Media, Inc., 2017.

[4] “Akka documentation,” Accessed: 5-January-2022. [Online]. Available:

https://doc.akka.io/docs/akka/current/general/actor-systems.

html.

[5] S. Klabnik and C. Nichols, The Rust Programming Language. No Starch

Press, 2019.

[6] “The Swift Programming Language: Swift 5.6,” Accessed: 1-March-2022.

[Online]. Available: https : / / docs . swift . org / swift - book /

LanguageGuide/Concurrency.html.

[7] D. Thomas, Programming Elixir: Functional, Concurrent, Pragmatic, Fun.

Pragmatic Bookshelf, 2018.

[8] O. Inverso, H. C. Melgratti, L. Padovani, C. Trubiani, and E. Tuosto,

“Probabilistic Analysis of Binary Sessions,” in 31st International Conference

on Concurrency Theory, CONCUR 2020, September 1-4, 2020, Vienna,

Austria (Virtual Conference), I. Konnov and L. Kovács, Eds., ser. LIPIcs,

vol. 171, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 14:1–14:21.

doi: 10.4230/LIPIcs.CONCUR.2020.14.

[9] “Akka typed,” Accessed: 3-November-2021. [Online]. Available: https://

doc.akka.io/docs/akka/2.5/typed/index.html.

[10] M. McGranaghan and E. Bendersky, “Go by Example: Channels,” Accessed:

8-April-2021. [Online]. Available: https://gobyexample.com/channels.

107

https://doi.org/10.1017/S0956796808007028
https://doi.org/10.1017/S0956796808007028
https://go.dev/doc/effective_go\#sharing
https://doc.akka.io/docs/akka/current/general/actor-systems.html
https://doc.akka.io/docs/akka/current/general/actor-systems.html
https://docs.swift.org/swift-book/LanguageGuide/Concurrency.html
https://docs.swift.org/swift-book/LanguageGuide/Concurrency.html
https://doi.org/10.4230/LIPIcs.CONCUR.2020.14
https://doc.akka.io/docs/akka/2.5/typed/index.html
https://doc.akka.io/docs/akka/2.5/typed/index.html
https://gobyexample.com/channels

References

[11] The Elixir Team, “Processes - The Elixir Programming Language,” Accessed:

15-December-2020. [Online]. Available: https : / / elixir - lang . org /

getting-started/processes.html.

[12] J. Armstrong, Programming Erlang - Software for a Concurrent World. 2013.

[13] T. Lindahl and K. Sagonas, “Practical type inference based on success

typings,” in Proceedings of the 8th International ACM SIGPLAN Conference

on Principles and Practice of Declarative Programming, July 10-12, 2006,

Venice, Italy, A. Bossi and M. J. Maher, Eds., ACM, 2006, pp. 167–178. doi:

10.1145/1140335.1140356.

[14] K. Sagonas and D. Luna, “Gradual Typing of Erlang Programs: A Wrangler

Experience,” in Proceedings of the 7th ACM SIGPLAN Workshop on Erlang,

Victoria, BC, Canada: ACM Press, Sep. 2008, pp. 73–82. doi: 10.1145/

1411273.1411284.

[15] D. Ancona, V. Bono, M. Bravetti, J. Campos, G. Castagna, et al., “Behavioral

types in programming languages,” Found. Trends Program. Lang., vol. 3,

no. 2-3, pp. 95–230, 2016. doi: 10.1561/2500000031.

[16] H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone, et al.,

“Foundations of Session Types and Behavioural Contracts,” ACM Comput.

Surv., vol. 49, no. 1, 3:1–3:36, 2016. doi: 10.1145/2873052.

[17] K. Honda, “Types for Dyadic Interaction,” in CONCUR ’93, 4th

International Conference on Concurrency Theory, Hildesheim, Germany,

August 23-26, 1993, Proceedings, E. Best, Ed., ser. Lecture Notes in

Computer Science, vol. 715, Springer, 1993, pp. 509–523. doi: 10.1007/3-

540-57208-2_35.

[18] A. L. Voinea and S. J. Gay, “Benefits of session types for software develop-

ment,” in Proceedings of the 7th International Workshop on Evaluation and

Usability of Programming Languages and Tools, PLATEAU@SPLASH 2016,

Amsterdam, Netherlands, November 1, 2016, C. Anslow, T. D. LaToza, and

J. Sunshine, Eds., ACM, 2016, pp. 26–29. doi: 10.1145/3001878.3001883.

[19] D. Castro-Perez, R. Hu, S. Jongmans, N. Ng, and N. Yoshida, “Distributed

Programming using Role-Parametric Session Types in Go: Statically-Typed

Endpoint APIs for Dynamically-Instantiated Communication Structures,”

Proc. ACM Program. Lang., vol. 3, no. POPL, 29:1–29:30, 2019. doi: 10.

1145/3290342.

[20] A. Scalas and N. Yoshida, “Lightweight Session Programming in Scala,” in

30th European Conference on Object-Oriented Programming, ECOOP 2016,

July 18-22, 2016, Rome, Italy, S. Krishnamurthi and B. S. Lerner, Eds.,

ser. LIPIcs, vol. 56, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016,

21:1–21:28. doi: 10.4230/LIPIcs.ECOOP.2016.21.

108

https://elixir-lang.org/getting-started/processes.html
https://elixir-lang.org/getting-started/processes.html
https://doi.org/10.1145/1140335.1140356
https://doi.org/10.1145/1411273.1411284
https://doi.org/10.1145/1411273.1411284
https://doi.org/10.1561/2500000031
https://doi.org/10.1145/2873052
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1145/3001878.3001883
https://doi.org/10.1145/3290342
https://doi.org/10.1145/3290342
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21

References

[21] L. Padovani, “A Simple Library Implementation of Binary Sessions,” J.

Funct. Program., vol. 27, e4, 2017. doi: 10.1017/S0956796816000289.

[22] K. Imai, N. Yoshida, and S. Yuen, “Session-ocaml: A session-based library

with polarities and lenses,” Sci. Comput. Program., vol. 172, pp. 135–159,

2019. doi: 10.1016/j.scico.2018.08.005.

[23] W. Kokke, “Rusty Variation: Deadlock-free Sessions with Failure in Rust,”

in Proceedings 12th Interaction and Concurrency Experience, ICE 2019,

Copenhagen, Denmark, 20-21 June 2019, M. Bartoletti, L. Henrio, A.

Mavridou, and A. Scalas, Eds., ser. EPTCS, vol. 304, 2019, pp. 48–60. doi:

10.4204/EPTCS.304.4.

[24] N. Lagaillardie, R. Neykova, and N. Yoshida, “Implementing Multiparty

Session Types in Rust,” in Coordination Models and Languages - 22nd IFIP

WG 6.1 International Conference, COORDINATION 2020, Held as Part

of the 15th International Federated Conference on Distributed Computing

Techniques, DisCoTec 2020, Valletta, Malta, June 15-19, 2020, Proceedings,

S. Bliudze and L. Bocchi, Eds., ser. Lecture Notes in Computer Science,

vol. 12134, Springer, 2020, pp. 127–136. doi: 10.1007/978-3-030-50029-

0_8.

[25] C. Bartolo Burlò, A. Francalanza, and A. Scalas, “On the Monitorability

of Session Types, in Theory and Practice,” in 35th European Conference

on Object-Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus,

Denmark (Virtual Conference), A. Møller and M. Sridharan, Eds.,

ser. LIPIcs, vol. 194, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021,

20:1–20:30. doi: 10.4230/LIPIcs.ECOOP.2021.20.

[26] R. Neykova, N. Yoshida, and R. Hu, “SPY: Local Verification of Global

Protocols,” in Runtime Verification - 4th International Conference, RV

2013, Rennes, France, September 24-27, 2013. Proceedings, A. Legay and S.

Bensalem, Eds., ser. Lecture Notes in Computer Science, vol. 8174, Springer,

2013, pp. 358–363. doi: 10.1007/978-3-642-40787-1_25.

[27] H. C. Melgratti and L. Padovani, “Chaperone Contracts for Higher-Order

Sessions,” Proc. ACM Program. Lang., vol. 1, no. ICFP, 35:1–35:29, 2017.

doi: 10.1145/3110279.

[28] S. Fowler, “An Erlang Implementation of Multiparty Session Actors,”

in Proceedings 9th Interaction and Concurrency Experience, ICE 2016,

Heraklion, Greece, 8-9 June 2016, M. Bartoletti, L. Henrio, S. Knight, and

H. T. Vieira, Eds., ser. EPTCS, vol. 223, 2016, pp. 36–50. doi: 10.4204/

EPTCS.223.3.

[29] G. Tabone and A. Francalanza, “Session Types in Elixir,” in Proceedings of

the 11th ACM SIGPLAN International Workshop on Programming Based

109

https://doi.org/10.1017/S0956796816000289
https://doi.org/10.1016/j.scico.2018.08.005
https://doi.org/10.4204/EPTCS.304.4
https://doi.org/10.1007/978-3-030-50029-0_8
https://doi.org/10.1007/978-3-030-50029-0_8
https://doi.org/10.4230/LIPIcs.ECOOP.2021.20
https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/10.1145/3110279
https://doi.org/10.4204/EPTCS.223.3
https://doi.org/10.4204/EPTCS.223.3

References

on Actors, Agents, and Decentralized Control, AGERE 2021, Virtual Event

/ Chicago, IL, USA, 17 October 2021, E. Castegren, J. D. Koster, and S.

Fowler, Eds., ACM, 2021, pp. 12–23. doi: 10.1145/3486601.3486708.

[30] E. Castegren, J. D. Koster, and S. Fowler, Eds., AGERE 2021: Proceedings

of the 11th ACM SIGPLAN International Workshop on Programming Based

on Actors, Agents, and Decentralized Control, Virtual Event / Chicago, IL,

USA, 17 October 2021, ACM, 2021, isbn: 978-1-4503-9104-7. doi: 10.1145/

3486601.

[31] B. C. Pierce, Types and Programming Languages. MIT Press, 2002, ch. 20,

isbn: 978-0-262-16209-8.

[32] R. Harper, Practical Foundations for Programming Languages (2nd. Ed.)

Cambridge University Press, 2016, isbn: 9781107150300.

[33] R. Milner, “A Theory of Type Polymorphism in Programming,” J. Comput.

Syst. Sci., vol. 17, no. 3, pp. 348–375, 1978. doi: 10.1016/0022-0000(78)

90014-4.

[34] R. M. Keller, “Formal Verification of Parallel Programs,” Commun. ACM,

vol. 19, no. 7, pp. 371–384, 1976. doi: 10.1145/360248.360251.

[35] C. P. Breshears, The Art of Concurrency - A Thread Monkey’s Guide to

Writing Parallel Applications. O’Reilly, 2009.

[36] B. W. Kernighan and D. M. Ritchie, The C programming language. Prentice

Hall, 2016.

[37] “Cuda C++ Programming Guide,” Accessed: 25-March-2022. [Online].

Available: https : / / docs . nvidia . com / cuda / cuda - c - programming -

guide/index.html.

[38] C. Hewitt, P. B. Bishop, and R. Steiger, “A universal modular ACTOR

formalism for artificial intelligence,” in IJCAI, William Kaufmann, 1973,

pp. 235–245.

[39] G. A. Agha, ACTORS - a model of concurrent computation in distributed

systems (MIT Press series in artificial intelligence). MIT Press, 1990, isbn:

978-0-262-01092-4.

[40] E. Stenman, “The BEAM Book,” Accessed: 29-October-2021. [Online].

Available: https://blog.stenmans.org/theBeamBook/.

[41] “Twitter (github),” Accessed: 25-March-2021. [Online]. Available: https:

//github.com/pinterest.

[42] “Andy Tran (Twitter),” Accessed: 20-January-2022. [Online]. Available:

https://web.archive.org/web/20220122094605/https://twitter.

com/nivenhuh/status/1483895710932078593.

110

https://doi.org/10.1145/3486601.3486708
https://doi.org/10.1145/3486601
https://doi.org/10.1145/3486601
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/360248.360251
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://blog.stenmans.org/theBeamBook/
https://github.com/pinterest
https://github.com/pinterest
https://web.archive.org/web/20220122094605/https://twitter.com/nivenhuh/status/1483895710932078593
https://web.archive.org/web/20220122094605/https://twitter.com/nivenhuh/status/1483895710932078593

References

[43] S. J. Gay and M. Hole, “Subtyping for session types in the pi calculus,” Acta

Informatica, vol. 42, no. 2-3, pp. 191–225, 2005. doi: 10.1007/s00236-005-

0177-z.

[44] M. Cassola, A. Talagorria, A. Pardo, and M. Viera, “A gradual type system

for Elixir,” Journal of Computer Languages, vol. 68, p. 101 077, 2022, issn:

2590-1184. doi: 10.1016/j.cola.2021.101077.

[45] P. Harvey, S. Fowler, O. Dardha, and S. J. Gay, “Multiparty Session Types

for Safe Runtime Adaptation in an Actor Language,” in 35th European

Conference on Object-Oriented Programming, ECOOP 2021, July 11-17,

2021, Aarhus, Denmark (Virtual Conference), A. Møller and M. Sridharan,

Eds., ser. LIPIcs, vol. 194, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2021, 10:1–10:30. doi: 10.4230/LIPIcs.ECOOP.2021.10.

[46] D. Mostrous and V. T. Vasconcelos, “Session Typing for a Featherweight

Erlang,” in Coordination Models and Languages - 13th International

Conference, COORDINATION 2011, Reykjavik, Iceland, June 6-9, 2011.

Proceedings, W. D. Meuter and G. Roman, Eds., ser. Lecture Notes in

Computer Science, vol. 6721, Springer, 2011, pp. 95–109. doi: 10.1007/978-

3-642-21464-6_7.

[47] G. Castagna, “Programming with union, intersection, and negation types,”

CoRR, vol. abs/2111.03354, 2021. arXiv: 2111.03354.

[48] “Duffel,” Accessed: 10-March-2022. [Online]. Available: https://duffel.

com/.

[49] K. Honda, A. Mukhamedov, G. Brown, T. Chen, and N. Yoshida,

“Scribbling Interactions with a Formal Foundation,” in Distributed

Computing and Internet Technology - 7th International Conference, ICDCIT

2011, Bhubaneshwar, India, February 9-12, 2011. Proceedings, R. Natarajan

and A. K. Ojo, Eds., ser. Lecture Notes in Computer Science, vol. 6536,

Springer, 2011, pp. 55–75. doi: 10.1007/978-3-642-19056-8_4.

[50] A. Igarashi, P. Thiemann, Y. Tsuda, V. T. Vasconcelos, and P. Wadler,

“Gradual session types,” J. Funct. Program., vol. 29, e17, 2019. doi: 10.

1017/S0956796819000169.

[51] Q. Guo, J. Derrick, C. B. Earle, and L. Fredlund, “Model-Checking Erlang

- A Comparison between EtomCRL2 and McErlang,” in TAIC PART,

ser. Lecture Notes in Computer Science, vol. 6303, Springer, 2010, pp. 23–38.

doi: 10.1007/978-3-642-15585-7_5.

[52] D. P. Attard, L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, et

al., “Better Late Than Never or: Verifying Asynchronous Components at

Runtime,” in FORTE, ser. Lecture Notes in Computer Science, vol. 12719,

Springer, 2021, pp. 207–225. doi: 10.1007/978-3-030-78089-0_14.

111

https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1016/j.cola.2021.101077
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.1007/978-3-642-21464-6_7
https://doi.org/10.1007/978-3-642-21464-6_7
https://arxiv.org/abs/2111.03354
https://duffel.com/
https://duffel.com/
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1017/S0956796819000169
https://doi.org/10.1017/S0956796819000169
https://doi.org/10.1007/978-3-642-15585-7_5
https://doi.org/10.1007/978-3-030-78089-0_14

References

[53] R. Neykova and N. Yoshida, “Multiparty Session Actors,” Log. Methods

Comput. Sci., vol. 13, no. 1, 2017. doi: 10.23638/LMCS-13(1:17)2017.

[54] R. Neykova and N. Yoshida, “Multiparty session actors,” in Proceedings

7th Workshop on Programming Language Approaches to Concurrency and

Communication-cEntric Software, PLACES 2014, Grenoble, France, 12 April

2014, A. F. Donaldson and V. T. Vasconcelos, Eds., ser. EPTCS, vol. 155,

2014, pp. 32–37. doi: 10.4204/EPTCS.155.5.

[55] A. Scalas, N. Yoshida, and E. Benussi, “Effpi: Verified message-passing

programs in Dotty,” in Proceedings of the Tenth ACM SIGPLAN Symposium

on Scala, Scala@ECOOP 2019, London, UK, July 17, 2019, J. I.

Brachthäuser, S. Ryu, and N. Nystrom, Eds., ACM, 2019, pp. 27–31. doi:

10.1145/3337932.3338812.

[56] A. Scalas, N. Yoshida, and E. Benussi, “Verifying message-passing

programs with dependent behavioural types,” in Proceedings of the

40th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, K. S.

McKinley and K. Fisher, Eds., ACM, 2019, pp. 502–516. doi: 10.1145/

3314221.3322484.

[57] R. Pucella and J. A. Tov, “Haskell session types with (almost) no class,” in

Proceedings of the 1st ACM SIGPLAN Symposium on Haskell, Haskell 2008,

Victoria, BC, Canada, 25 September 2008, A. Gill, Ed., ACM, 2008, pp. 25–

36. doi: 10.1145/1411286.1411290.

[58] W. Kokke and O. Dardha, “Deadlock-Free Session Types in Linear Haskell,”

CoRR, vol. abs/2103.14481, 2021. arXiv: 2103.14481.

[59] K. Imai, R. Neykova, N. Yoshida, and S. Yuen, “Multiparty Session

Programming With Global Protocol Combinators,” in 34th European

Conference on Object-Oriented Programming, ECOOP 2020, November 15-

17, 2020, Berlin, Germany (Virtual Conference), R. Hirschfeld and T. Pape,

Eds., ser. LIPIcs, vol. 166, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2020, 9:1–9:30. doi: 10.4230/LIPIcs.ECOOP.2020.9.

[60] T. B. L. Jespersen, P. Munksgaard, and K. F. Larsen, “Session types for

Rust,” in Proceedings of the 11th ACM SIGPLAN Workshop on Generic

Programming, WGP@ICFP 2015, Vancouver, BC, Canada, August 30, 2015,

P. Bahr and S. Erdweg, Eds., ACM, 2015, pp. 13–22. doi: 10.1145/2808098.

2808100.

[61] K. Honda, N. Yoshida, and M. Carbone, “Multiparty Asynchronous Session

Types,” J. ACM, vol. 63, no. 1, 9:1–9:67, 2016. doi: 10.1145/2827695.

[Online]. Available: https://doi.org/10.1145/2827695.

112

https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.4204/EPTCS.155.5
https://doi.org/10.1145/3337932.3338812
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/1411286.1411290
https://arxiv.org/abs/2103.14481
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2827695

References

[62] U. de’Liguoro and L. Padovani, “Mailbox Types for Unordered Interactions,”

in 32nd European Conference on Object-Oriented Programming, ECOOP

2018, July 16-21, 2018, Amsterdam, The Netherlands, T. D. Millstein, Ed.,

ser. LIPIcs, vol. 109, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018,

15:1–15:28. doi: 10.4230/LIPIcs.ECOOP.2018.15.

[63] S. Fowler, S. Lindley, J. G. Morris, and S. Decova, “Exceptional asynchronous

session types: Session types without tiers,” Proc. ACM Program. Lang., vol. 3,

no. POPL, 28:1–28:29, 2019. doi: 10.1145/3290341.

[64] J. Harrison, “Automatic detection of Core Erlang message passing errors,” in

Proceedings of the 17th ACM SIGPLAN International Workshop on Erlang,

ICFP 2018, St. Louis, MO, USA, September 23-29, 2018, N. Chechina and A.

Francalanza, Eds., ACM, 2018, pp. 37–48. doi: 10.1145/3239332.3242765.

[65] “Gradualizer,” Accessed: 4-February-2022. [Online]. Available: https : / /

github.com/josefs/Gradualizer.

[66] “Eqwalizer (github),” Accessed: 30-July-2022. [Online]. Available: https:

//github.com/WhatsApp/eqwalizer.

[67] N. V. Rajendrakumar and A. Bieniusa, “Bidirectional typing for Erlang,” in

Proceedings of the 20th ACM SIGPLAN International Workshop on Erlang,

Erlang@ICFP 2021, Virtual Event, Korea, August 26, 2021, S. Aronis and

A. Bieniusa, Eds., ACM, 2021, pp. 54–63. doi: 10.1145/3471871.3472966.

[68] S. Marlow and P. Wadler, “A Practical Subtyping System For Erlang,”

in Proceedings of the 1997 ACM SIGPLAN International Conference on

Functional Programming (ICFP ’97), Amsterdam, The Netherlands, June

9-11, 1997, S. L. P. Jones, M. Tofte, and A. M. Berman, Eds., ACM, 1997,

pp. 136–149. doi: 10.1145/258948.258962.

[69] N. Valliappan and J. Hughes, “Typing the wild in Erlang,” in Proceedings of

the 17th ACM SIGPLAN International Workshop on Erlang, ICFP 2018, St.

Louis, MO, USA, September 23-29, 2018, N. Chechina and A. Francalanza,

Eds., ACM, 2018, pp. 49–60. doi: 10.1145/3239332.3242766.

[70] M. Dezani, R. Kuhn, S. Lindley, and A. Scalas, “Behavioural Types: Bridging

Theory and Practice (Dagstuhl Seminar 21372),” Dagstuhl Reports, vol. 11,

no. 8, M. Dezani, R. Kuhn, S. Lindley, and A. Scalas, Eds., pp. 52–75, 2022,

issn: 2192-5283. doi: 10.4230/DagRep.11.8.52.

[71] Behavioural types: From Theory to Tools. River Publishers, 2017. doi: 10.

13052/rp-9788793519817.

[72] “BehAPI Workshop @ ETAPS 2019,” 2019, Accessed: 18-March-2022.

[Online]. Available: https://www.um.edu.mt/projects/behapi/behapi-

workshop-etaps-2019/.

113

https://doi.org/10.4230/LIPIcs.ECOOP.2018.15
https://doi.org/10.1145/3290341
https://doi.org/10.1145/3239332.3242765
https://github.com/josefs/Gradualizer
https://github.com/josefs/Gradualizer
https://github.com/WhatsApp/eqwalizer
https://github.com/WhatsApp/eqwalizer
https://doi.org/10.1145/3471871.3472966
https://doi.org/10.1145/258948.258962
https://doi.org/10.1145/3239332.3242766
https://doi.org/10.4230/DagRep.11.8.52
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.13052/rp-9788793519817
https://www.um.edu.mt/projects/behapi/behapi-workshop-etaps-2019/
https://www.um.edu.mt/projects/behapi/behapi-workshop-etaps-2019/

References

[73] “STARDUST: Session Types for Reliable Distributed Systems,” Accessed:

15-December-2021. [Online]. Available: https://epsrc-stardust.github.

io/.

[74] P. Letouzey, “A New Extraction for Coq,” in Types for Proofs and

Programs, Second International Workshop, TYPES 2002, Berg en Dal, The

Netherlands, April 24-28, 2002, Selected Papers, H. Geuvers and F. Wiedijk,

Eds., ser. Lecture Notes in Computer Science, vol. 2646, Springer, 2002,

pp. 200–219. doi: 10.1007/3-540-39185-1_12.

[75] A. Bove, P. Dybjer, and U. Norell, “A Brief Overview of Agda - A Functional

Language with Dependent Types,” in Theorem Proving in Higher Order

Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany,

August 17-20, 2009. Proceedings, S. Berghofer, T. Nipkow, C. Urban, and M.

Wenzel, Eds., ser. Lecture Notes in Computer Science, vol. 5674, Springer,

2009, pp. 73–78. doi: 10.1007/978-3-642-03359-9_6.

[76] S. Nyström, “A soft-typing system for Erlang,” in Proceedings of the 2003

ACM SIGPLAN Workshop on Erlang, Uppsala, Sweden, August 29, 2003,

B. Däcker and T. Arts, Eds., ACM, 2003, pp. 56–71. doi: 10.1145/940880.

940888.

114

https://epsrc-stardust.github.io/
https://epsrc-stardust.github.io/
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1145/940880.940888
https://doi.org/10.1145/940880.940888

Appendix

115

A. Additional Definitions

In this section, we formalise some auxiliary definitions that were used in Chapters 3

and 4.

Definition A.1 (Free Variables). The set of free variables is defined inductively

as:

fv(e) =

{x} e = x

∅ e = b

fv(e1) ∪ fv(e2) e = e1 � e2 or e = [e1 | e2]

fv(e′) e = not e′

∪i∈1..nfv(ei) e = {e1, . . . , en}

fv(t) =

fv(t1) ∪ (fv(t2) \ {x}) t = (x = t1; t2)

∪i∈1..nfv(ei) ∪ fv(w) t = send (w, {:l, e1, . . . , en})

∪i∈I [fv(ti) \ vars(p̃i)] t = receive do ({:li, p̃i} → ti)i∈Iend

∪i∈2..nfv(ei) ∪ fv(w) t = f (w, e2, . . . , en)

∪i∈I [fv(ti) \ vars(pi)] ∪ fv(e) t = case e do (pi → ti)i∈Iend �

116

Appendix A. Additional Definitions

Definition A.2 (Bound Variables).

bv(t) =

∅ t = e or t = send (w, {:l, ẽ}) or t = f (ẽ)

{x} ∪ bv(t1) ∪ bv(t2) t = (x = t1; t2)

∪i∈I [bv(ti) ∪ vars(p̃i)] t = receive do ({:li, p̃i} → ti)i∈Iend

∪i∈I [bv(ti) ∪ vars(pi)] t = case e do (pi → ti)i∈Iend �

Definition A.3 (Agree Function). The boolean function agree, returns true if an

action α performs the actions allowed by the session type S. The function, denoted

as agree(S, α), is defined for the following cases:

agree(S, τ)

agree(S, f/n)

agree(⊕
{

!li
(
T̃i
)
.Si
}
i∈I , ι! {lj, ṽ}) where j ∈ I

agree(&
{

?li
(
T̃i
)
.Si
}
i∈I , ? {lj, ṽ}) where j ∈ I �

Definition A.4 (Function Details). We can extract function details (i.e., params,

body, param types, return type, dual) from a list of functions (Q̃) and build a

mapping, using set-comprehension, as follows. The list of functions (Q̃) may consist

of public (D) and private (P) functions.

details(Q̃) =

 f/n :

dual = y, params = x̃,

param types = T̃ ,

return type = T, body = t

∣∣∣∣∣∣∣∣∣∣

[@session “S”]

@spec f
(
pid, T̃

)
:: T

def[p] f(y, x̃) do t end

 ∈ Q̃

�

Definition A.5 (Functions Names and Arity). This definition (functions) takes

the set of all public function (D̃) as input, and returns a set of all public function

117

Appendix A. Additional Definitions

names and their arity.

functions(D̃) =

 f/n

∣∣∣∣∣∣
@session . . . ; @spec . . .

def f(y, x2, . . . , xn) do t end

 ∈ D̃

�

Definition A.6 (All Session Types). The function sessions(D̃), returns the

session type corresponding to each annotated public function.

sessions(D̃) =

 f/n : S

∣∣∣∣∣∣
@session “S”; @spec . . .

def f(y, x2, . . . , xn) do t end

 ∈ D̃

In case the @dual annotation is used instead of @session , the dual session type

is computed in the background. �

Definition A.7 (Variable Substitution).

e [v/x] =

v e = x

y e = y, y 6= x

b e = b

e1 [v/x] � e2 [v/x] e = e1 � e2

not (e′ [v/x]) e = not e′

[e1 [v/x] | e2 [v/x]] e = [e1 | e2]

{e1 [v/x] , . . . , en [v/x]} e = {e1, . . . , en}

t [v/x] =

send (w [v/x] , {: l, e1 [v/x] , . . . , en [v/x]}) t = send (w, {: l, e1, . . . , en})

receive do ({li, p̃i} → ti [v/x])i∈Iend t = receive do ({li, p̃i} → ti)i∈Iend

f (e1 [v/x] , . . . , en [v/x]) t = f (e1, . . . , en)

case e [v/x] do (pi → ti [v/x])i∈Iend t = case e do (pi → ti)i∈Iend

y = t1 [v/x] ; t2 [v/x] t = (y = t1; t2), x 6= y, y 6= v

�

118

B. Proofs

The following are the proofs for Proposition 6, Corollary 16, Lemmata 9, 10, 12

and 15 from Chapter 4.

Proposition 6 (Closed Term). If fv(t) = ∅ and t
α−→ t′, then fv(t′) = ∅

Proof. By induction on the structure of t.

[t = e] Holds immediately by the rule [rExpression] and the Closed Expression

Lemma.

[t = (x = t1; t2)] Given that current structure of t, we can derive t
α−→ t′ using

two cases:

1. [rLet1] From the rule, t′ = (x = t′1; t2) and

t1
α−→ t′1 (22a)

From the premise, fv(t) = ∅, so by the fv definition, fv(t1)∪(fv(t2)\{x}) =

∅, or equivalently

fv(t1) = ∅ (22b)

fv(t2) \ {x} = ∅ (22c)

If we apply the inductive hypothesis to eqs. (22a) and (22b), we get

fv(t′1) = ∅ (22d)

119

Appendix B. Proofs

So, by eqs. (22c) and (22d) and the definition of fv, we get fv(x = t′1; t2) =

∅ as required.

2. [rLet2] From the rule, t = (x = v; t2) and t′ = t2 [v/x]. Since fv(t) = ∅,

by the Free Variables Definition, fv(v)∪ (fv(t2)\{x}) = ∅, or equivalently

fv(v) = ∅ (22e)

fv(t2) \ {x} = ∅ (22f)

We need to show that fv(t′) = ∅, or fv(t2 [v/x]) = ∅, so we consider two

sub-cases:

a. If x /∈ fv(t2), then by Corollary 2, t2 = t2 [v/x]. Substituting this in

eq. (22f), results in fv(t2 [v/x]) = ∅, as required.

b. If x ∈ fv(t2), then by Lemma 3, we get fv(t2 [v/x]) = fv(t2) \ {x}. If we

substitute this in eq. (22f), the case holds.

[t = send (w, {:l, e1, . . . , en})] Given that current structure of t, we can

derive t
α−→ t′ using two cases:

1. [rChoice1] From this rule, we know that α = τ and

t′ = send (ι, {:l, v1, . . . , vk−1, e
′
k, . . . , en})

ek → e′k (23a)

Since fv(t) = ∅, then by the fv definition

fv(ι) = ∅ (23b)

fv(vi) = ∅ for i ∈ 1..k − 1 (23c)

fv(ei) = ∅ for i ∈ k..n (23d)

Applying the Closed Expression Lemma to eqs. (23a) and (23d), results

in fv(ek) = ∅. Using this information along with eqs. (23b–d) and the fv

definition, results in fv(t′) = ∅ as required.

2. [rChoice2] In this case t = {:l, v1, . . . , vn} and t′ = {:lµ, v1, . . . , vn}.

120

Appendix B. Proofs

Since from the premise fv(t) = ∅, then using the fv definition,

fv(ι) = ∅, fv(vi) = ∅ for i ∈ 1..n (23e)

To show that fv({:lµ, v1, . . . , vn}) = ∅, we can apply eq. (23e) to the fv

definition.

[t = receive do ({:li, p̃i} → ti)i∈Iend] From the premise, we know that

fv(t) = ∅, so by the fv definition,

fv(ti) \ vars(p̃i) = ∅ for all i ∈ I (24a)

Given that current structure of t, we can deduce t
α−→ t′ using [rBranch],

where α = ? {:lj, v1, . . . , vn} for some j ∈ I, and

match(p̃j, ṽ) = σ where σ = [v′1, . . . , v′k/x1, . . . , xk] (24b)

t′ = tjσ

From eq. (24b), we can apply Lemma 4 to get

vars(p̃j) = {x1, . . . , xk} (24c)

Substituting eq. (24c) in eq. (24a) (for i = j), we get fv(tj)\{x1, . . . , xk} = ∅.

Our aim is to get tjσ = ∅, so we check if x ∈ fv(tj). If this is valid, then

by Lemma 3, we can conclude that fv(tj [v′1/x1]) \ {x2, . . . , xk} = ∅. In case

when x /∈ fv(tj), the same can be concluded by Corollary 2. Applying the

same procedure for a total of k times, results in fv(tj [v′1, . . . , v′k/x1, . . . , xk]) = ∅,

as required.

[t = f (w, e2, , . . . , en)] Given the current structure of t, we can derive t
α−→ t′

using two cases:

1. [rCall1] From this rule, we know that α = τ , t = f (v1, . . . , vk−1, ek, . . . , en),

t′ = f (v1, . . . , vk−1, e
′
k, . . . , en) and

ek → e′k (25a)

121

Appendix B. Proofs

Since fv(t) = ∅, then by the fv definition,

fv(vi) = ∅ for all i ∈ 1..k − 1 (25b)

fv(ei) = ∅ for all i ∈ k..n (25c)

Applying the Closed Expression Lemma to eqs. (25a) and (25c) (for i = k),

we get

fv(ek) = ∅ (25d)

So, using the fv definition with eqs. (25b–d), result fv(t′) = ∅ holds as

expected.

2. [rCall2] From the rule, we know that α = f/n and

t = f (ι, v2, . . . , vn) (25e)

t′ = t̄ [ι/y] [v2, . . . , vn/x2, . . . , xn]

Σ (f/n) = Ω Ω.body = t Ω.params = x2, . . . , xn Ω.dual = y

(25f)

Since term reduction can only happen with respect to a well-formed

function information environment Σ (i.e., Definition 3.4), we can assume

that the only free variables in a function body are the parameter types, or

formally, for all f/n ∈ dom(Σ), we have

fv(Σ(f/n).body) \ Σ(f/n).params \ Σ(f/n).dual = ∅

Thus, using this information and substituting the information from

eq. (25f), we get

fv(t̄) \ {y, x2, . . . , xn} = ∅ (25g)

To obtain the expected result (i.e., fv(t′) = ∅), we check if y ∈ fv(t̄).

If this is true, then by Lemma 3, we can conclude that fv(t̄ [ι/y]) \

{x2, . . . , xn} = ∅. In case when x /∈ fv(t̄), the same can be concluded by

Corollary 2. Applying the same procedure for the remaining free variables

(i.e., x2, . . . , xn), we get fv(tj [v′1, . . . , v′k/x1, . . . , xk]) = ∅, as expected.

[t = case e do (pi → ti)i∈Iend] Given that current structure of t, we can derive

122

Appendix B. Proofs

t
α−→ t′ using two cases:

1. [rCase1] From the rule we know that t′ = case e′ do (pi → ti)i∈Iend, and

from the premise we know that

e→ e′ (26a)

Since fv(t) = ∅, by the fv definition, we know that

fv(ti) \ vars(pi) = ∅ for all i ∈ I (26b)

fv(e) = ∅ (26c)

Applying Closed Expression Lemma to eqs. (26a) and (26c), results in

fv(e′) = ∅. Thus, using this information, along with eq. (26b) and the fv

definition, we get fv(t′) = ∅ as needed.

2. [rCase2] From the rule, we know that t = case v′ do (pi → ti)i∈Iend,

e = v′ and for some j ∈ I,

match(pj, v
′) = σ where σ = [v1, . . . , vn/x1, . . . , xn] (26d)

t′ = tjσ (26e)

From the premise, we know that fv(t) = ∅, so by the fv definition,

fv(v′) = ∅ and

fv(ti) \ vars(p̃i) = ∅ for all i ∈ I (26f)

From eq. (26d), we can apply Lemma 4, to get

vars(pj) = {x1, . . . , xk} (26g)

Substituting eq. (26g) in eq. (26f) (for i = j), we get fv(tj) \

{x1, . . . , xk} = ∅. By similar reasoning from previous cases, we get

fv(t′) = ∅, as required. �

Lemma 4. match(p, v) = [v1, . . . , vn/x1, . . . , xn], implies vars(p) = {x1, . . . , xn}

Proof. By induction on the structure of p.

123

Appendix B. Proofs

[p = b] The function match(b, v) succeeds only when v = b. So, by the match

definition, when v = b,

match(b, b) = [] (27a)

By the vars definition, vars(b) = ∅, which matches the result from eq. (27a)

since no variables where substituted.

[p = x] By the match definition, for any v,

match(x, v) = [v/x] (27b)

By the vars definition, vars(x) = {x}, which matches the variable in the

substitution of eq. (27b).

[p = [w1 | w2]] By the match definition, for v = [v1 | v2],

match(p, v) = match(w1, v1),match(w2, v2) = [ṽ1/̃x1] [ṽ2/̃x2] where (27c)

match(w1, v1) = [ṽ1/̃x1] (27d)

match(w2, v2) = [ṽ2/̃x2] (27e)

By case analysis of w1 and w2 from eqs. (27d) and (27e), we conclude that

vars(w1) = {x̃1} (27f)

vars(w2) = {x̃2} (27g)

We need to show that vars([w1 | w2]) = {x̃1, x̃2}. By the vars definition and

eqs. (27f) and (27g), vars([w1 | w2]) = vars(x̃1) ∪ vars(x̃2) = {x̃1} ∪ {x̃2}.

This result matches the variables in the substitutions of eq. (27c).

[p = {w1, . . . , wn}] Similar to the previous case. �

Lemma 9 (∆-Weakening). If ∆·Γ `w SBt : TCS ′, then (∆,∆′)·Γ `w SBt : TCS ′

Proof. Follows by induction on the derivation of ∆ ·Γ `w SBt : T CS ′. We analyse

the significant cases:

124

Appendix B. Proofs

[tRecUnknownCall] From the rule, we know that

(∆, f/n : S) · (Γ,Γ′) `y S B t̄ : T C S ′ (28a)

Γ `exp ei : Ti for all i ∈ 2..n (28b)

Applying the inductive hypothesis to eq. (28a) results in (∆,∆′, f/n : S) ·

(Γ,Γ′) `y S B t : T C S ′, where we assume that f/n /∈ dom(∆′). So,

using the latter result, eq. (28b) and [tRecUnknownCall] results in

(∆,∆′) · Γ `w S B t : T C S ′, as required.

[tRecKnownCall] From the rule, we know that

∆ (f/n) = S (29a)

Γ `exp ei : Ti for all i ∈ 2..n (29b)

If we extend ∆ by ∆′, then (∆,∆′)(f/n) = S remains valid. So, using

this information, along with eq. (29b) in [tRecKnownCall], we get

(∆,∆′) · Γ `w S B t : T C end, as required.

Cases [tChoice] and [tExpression] hold immediately since ∆ is unused. The

remaining cases hold effortlessly by the inductive hypothesis. �

Lemma 10. Given some pattern p, such that `wpat p : T B Γ, then vars(p) =

dom(Γ)

Proof. Follows by induction on `wpat p : T B Γ.

[tpLiteral] From the rule (i.e., `wpat b : T B ∅), p = b and Γ = ∅, so the domain

of Γ = ∅. By the Variable Patterns Definition, vars(b) also returns ∅, so case

holds.

[tpEList] Analogous to previous case.

[tpVariable] From the rule, p = x and Γ = x : T , so the domain of Γ contains

just the variable x. By the vars definition, vars(x) also contains just the

variable x, so the case is valid.

125

Appendix B. Proofs

[tpTuple] From the rule, p = {w1, . . . , wn}, Γ = Γ1, . . . , Γn, and

`wpat wi : Ti B Γi for all i ∈ 1..n (30a)

By eq. (30a) and the inductive hypothesis, we know that

vars(wi) = dom(Γi) for all i ∈ 1..n (30b)

By the vars definition, we know that vars(p) = vars(w1) ∪ · · · ∪ vars(wn).

Thus, substituting eq. (30b) in this information, results in vars(p) =

dom(Γ1) ∪ · · · ∪ dom(Γn), which is equal to dom(Γ), as required.

[tpList] From the rule, p = [w1 | w2], Γ = (Γ1,Γ2), and

`wpat w1 : T B Γ1 (31a)

`wpat w2 : [T] B Γ2 (31b)

By eqs. (31a) and (31b) and the inductive hypothesis, we know that

vars(w1) = dom(Γ1) and vars(w2) = dom(Γ2) (31c)

By the vars definition, we know that vars(p) = vars(w1) ∪ vars(w2). Thus,

substituting eq. (31c) in this information, results in vars(p) = dom(Γ1) ∪

dom(Γ2), which is equal to dom(Γ), as required. �

Lemma 12 (Substitution).

i. If Γ `exp v : T ′ and ∆ · (Γ, x : T ′) `w S B t : T C S ′, then

∆ · Γ `w[v/x] S B t [v/x] : T C S ′

ii. If Γ `exp v : T ′ and Γ, x : T ′ `exp e : T , then Γ `exp e [v/x] : T

Proof. By induction on the derivation of ∆ · (Γ, x : T ′) `w SB t : T CS ′ for Item i,

and by induction on the derivation of Γ, x : T ′ `exp e : T for Item ii. We show the

main cases for Item i:

126

Appendix B. Proofs

[tLet] From the rule, we know that t = (x′ = t1; t2), and

x′ 6= w (32a)

Γ `exp v : T ′ (32b)

∆ · (Γ, x : T ′) `w S B t1 : T ′′ C S ′′ (32c)

∆ · (Γ, x : T ′, x′ : T ′′) `w S ′′ B t2 : T C S ′ (32d)

The variable binding environment of eq. (32d) can be reordered to

∆ · (Γ, x′ : T ′′, x : T ′) `w S ′′ B t2 : T C S ′ (32e)

We need to show that ∆ · Γ `w[v/x] S B (x′ = t1; t2) [v/x] : T C S ′, which by

the Variable Substitution Definition, is equivalent to

∆ · Γ `w[v/x] S B x′ = t1 [v/x] ; t2 [v/x] : T C S ′ (32f)

for x 6= x′ and x′ 6= v. To obtain eq. (32f), we need some preliminary results.

Applying the inductive hypothesis to eqs. (32b) and (32c), and similarly to

eqs. (32b) and (32e), results in

∆ · Γ `w[v/x] S B t1 [v/x] : T ′′ C S ′′ (32g)

∆ · (Γ, x′ : T ′′) `w[v/x] S ′′ B t2 [v/x] : T C S ′ (32h)

From eq. (32a) and the Variable Substitution Definition we know that

x 6= w [v/x]. Applying this information, along with eqs. (32g) and (32h)

to the premise of [tLet] results in eq. (32f), as required.

[tBranch] From the rule, [tBranch], we know that for some n ∈ N and

Γ `exp v : T ′ (33a)

S = &
{

?li
(
T 1
i , . . . , T

n
i

)
.Si
}
i∈I

t = receive do
({

:li, p
1
i , . . . , p

n
i

}
→ ti

)
i∈Iend (33b)

From the premise, we also know that, for all i ∈ I:

`wpat p
j
i : T ji B Γji for all j ∈ 1..n (33c)

∆ ·
(
Γ, x : T ′,Γ1

i , . . . , Γni
)
`w Si B ti : T C S ′ (33d)

127

Appendix B. Proofs

This case holds if the following statement is obtained:

∆ · Γ `w[v/x] Si B ti [v/x] : T C S ′ (33e)

where t [v/x] = receive do ({:li, p1
i , . . . , p

n
i } →)i∈Iend. To obtain eq. (33e)

we need to use the [tBranch] rule which requires multiple premises.

Applying the inductive hypothesis to eqs. (33a) and (33d) results in

∆ ·
(
Γ,Γ1

i , . . . , Γni
)
`w[v/x] Si B ti [v/x] : T C S ′ for all i ∈ I (33f)

If w 6= x, then eq. (33c)

`w[v/x]
pat pji : T ji B Γji for all j ∈ 1..n (33g)

since by the Variable Substitution Definition, w = w [v/x]. Therefore,

eqs. (33f) and (33g) can be applied to the premise of [tBranch] to obtain

eq. (33e):

∆ · Γ `w[v/x] Si B ti [v/x] : T C S ′

which is the required result. In case when w = x, then an additional mapping

may be obtained from the pattern type rule which maps the dual pid to some

type. However, since in this case x would be substituted to a variable, then

the extra mapping does not affect the result, obtaining eq. (33e) as required.

[tChoice] From the rule, we know that for some i ∈ I, T = {atom, T 1
i , . . . , T

n
i },

S = ⊕
{

!li
(
T̃i
)
.Si
}
i∈I and

t = send (ι, {:li, e1, . . . , en}) (34a)

Γ, x : T ′ `exp ej : T ji for all j ∈ 1..n (34b)

Γ `exp v : T ′ (34c)

Applying eqs. (34b) and (34c) to Item ii of Lemma 12 results in Γ `exp

ej [v/x] : T ji for all j ∈ 1..n. Applying this result to [tChoice] results in

∆ · Γ `w[v/x] S B t [v/x] : T C S ′

which is the required result, since t [v/x] = send (w [v/x], {:li, e1 [v/x] , . . . , en [v/x]}).

�

128

Appendix B. Proofs

Lemma 15. For all patterns p and values v,

match(p, v) = [v1, . . . , vn/x1, . . . , xn]

`wpat p : T B Γ

∅ `exp v : T

 =⇒

 Γ = x1 : T1, . . . , xn : Tn

∅ `exp vi : Ti for i ∈ 1..n

Proof. By induction on the definition match(p, v). We proceed by case analysis:

[p = b, v = b] By the definition, match(b, b) = [], so no substitutions are

expected. By `wpat b : T B Γ and [tpLiteral], the variable binding

environment (i.e., Γ) must be empty, so case holds immediately.

[p = x] By definition, match(x, v) = [v/x], and from the premise we know that

∅ `exp v : T. (35a)

From `wpat x : T B Γ and [tpVariable], we know that Γ must contain x : T

only. Therefore, case holds by eq. (35a).

[p = [w1 | w2] , v = [v1 | v2]]

Using the match definition, match([w1 | w2] , [v1 | v2]) =

match(w1, v1),match(w2, v2), or equivalently

match(w1, v1) = [v′1, . . . , v′j/x1, . . . , xj] (36a)

match(w2, v2) = [v′k, . . . , v′n/xk, . . . , xn] where k = j + 1 (36b)

From the premise, applying [tList] to ∅ `exp [v1 | v2] : [T] , results in

∅ `exp v1 : T and ∅ `exp v2 : [T] (36c)

Applying also [tpList] to `wpat [w1 | w2] : [T] B Γ, results in

`wpat w1 : T B Γ′ and `wpat w2 : [T] B Γ′′ (36d)

Applying the inductive hypothesis twice to eqs. (36a–d) results in

Γ′ = x1 : T1, . . . , xj : Tj and Γ′′ = xk : Tk, . . . , xn : Tn (36e)

∅ `exp v
′
i : Ti for all i ∈ 1..n (36f)

Therefore, case holds by eqs. (36e) and (36f), since Γ = Γ′,Γ′′.

[p = {w1, . . . , wm} , v = {v1, . . . , vm}]

129

Appendix B. Proofs

Using the match definition, match({w1, . . . , wm} , {v1, . . . , vm}) =

match(w1, v1), . . . , match(wm, vm) = σ , or equivalently, for i ∈ 1..m,

match(wi, vi) = σi given that σ = σ1, . . . , σm (37a)

From ∅ `exp {v1, . . . , v2} : {T1, . . . , Tm}, by [tTuple], we know that

∅ `exp vi : Ti (37b)

Applying also [tpTuple] to `wpat {w1, . . . , wm} : {T1, . . . , Tm} B

Γ1, . . . , Γm, results in

`wpat wi : Ti B Γi (37c)

Applying the inductive hypothesis m times to eqs. (37a–c) results in

Γ = Γ1, . . . , Γm = x1 : T1, . . . , xn : Tn

∅ `exp vj : Tj for all j ∈ 1..n

as required. �

Corollary 16. For all patterns p̃ = p1, . . . , pn, values ṽ = v1, . . . , vn and

∀j ∈ 1..n, then the following implication holds.

match(p̃, ṽ) = [v′1, . . . , v′k/x1, . . . , xk]

`ypat p
j : T j B Γj

∅ `exp vj : T j

 =⇒

 Γ̃ = Γ1, . . . , Γj = x1 : T1, . . . , xk : Tk

∅ `exp v
′
i : Ti for i ∈ 1..k

Proof. Take j = 1, where we know that match(p1, v1) = σ1, `ypat p
1 : T 1 B Γ1 and

∅ `exp v1 : T 1. Then, applying this information to Lemma 15, we get

Γ1 = x1
1 : T 1

1 , . . . , x
1
m : T 1

m (38a)

∅ `exp v
1
i : T 1

i for i ∈ 1..m (38b)

Generalising for j ∈ 1..n, then Γ̃ = Γ1, . . . , Γn holds by generalising eq. (38a).

Also, ∅ `exp v
′
i : Ti for i ∈ 1..k holds by eq. (38b). Thus, Corollary 16 holds by

applying Lemma 15 n times. �

130

C. Complete Example

In Section 5.5 we presented an example with only one side of an interaction verified.

In this chapter, we present a simple example where both sides of an interaction are

verified statically by ElixirST using session types.

Consider a simple counter system [76] which allows a server process to keep a

running total. This total can be incremented by an interactive client process, or

else terminated by the same client process.

The interaction between the client and a server is depicted in the Counter

module shown in Listing C.1, which is made up of two public functions, called

server and client, and a private function called terminate. The server function

(lines 6–11) takes two parameters: the client’s pid and an initial total. This

function is able to receive a message labelled, either :incr or :stop. If it receives

:incr, along with some payload called val, it recurses back to the beginning, while

incrementing the running total. If it receives a :stop label, it calls the private

function terminate. The function terminate (lines 14–17) sends the total value

back to the client, in a message labelled :value.

On the other interacting end, there is the client function, defined in lines 21–

28, which takes the server’s pid as a parameter. The client sends a request to the

server to increase the total by five (line 22) and then by six (line 23), in messages

labelled :incr. Afterwords, the client sends a request to :stop the interaction,

before it receives back the final total counter (lines 25–27). The interaction can be

131

Appendix C. Complete Example

1 defmodule Counter do

2 use ElixirST

3 @session "counter = &{?incr(number).counter,

4 ?stop().!value(number).end}"

5 @spec server(pid, number) :: atom

6 def server(client, total) do

7 receive do

8 {:incr, val} -> server(client, total + val)

9 {:stop} -> terminate(client, total)

10 end

11 end

12
13 @spec terminate(pid, number) :: atom

14 defp terminate(client, total) do

15 send(client, {:value, total})

16 :ok

17 end

18
19 @dual "counter"

20 @spec client(pid) :: number

21 def client(server) do

22 send(server, {:incr, 5})

23 send(server, {:incr, 6})

24 send(server, {:stop})

25 receive do

26 {:value, val} -> val

27 end

28 end

29 end

server

clien
t

Listing C.1: Counter annotated with session types

initiated using ElixirST’s spawn function, as follows.

ElixirST.spawn(&Counter.server/2, [0], &Counter.client/1, [])

The two parties follow the protocol defined in Figure C.1. This protocol can be

formalised as a session type called counter , which defines the interaction from the

server’s point-of-view:

counter = &

?incr(number).counter,

?stop().!value(number).end

This counter session type dictates that the server must accept two forms of

messages. It must be able to handle a sequence of messages labelled incr containing

a payload of type number. Finally, it must also be able to handle a message stop,

132

Appendix C. Complete Example

ClientServer

re
cu

rse

incr(number)

stop()

value(number)

ch
oice

1

2

Figure C.1: Counter protocol [29]

where it must send a label value and a payload of type number (!value(number)),

before terminating the session (end).

The other interacting party (i.e., the client) must follow the dual session type

of counter , called counter:

counter = ⊕

!incr(number).counter,

!stop().?value(number).end

The counter type dictates that the client can choose to send a message labelled

incr with some number, where it recurses back to the beginning (counter).

It can also choose to send a stop message, where it receives the total value

(?value(number)). Then, the interaction terminates (end).

In Listing C.1, the session type counter is being enforced via the @session

annotation in line 3. Conversely, the session type counter is enforced using @dual

in line 19.

133

	Introduction
	Aims and Objectives
	Solution Overview
	Document Outline

	Background
	Type Systems
	Labelled Transition System
	Concurrency
	Shared State Concurrency
	Message-Passing Concurrency

	Elixir
	Functional Aspect
	Concurrent Aspect
	Present Validations

	Conclusion

	A Formal Analysis
	Outline of the Approach
	Elixir Syntax
	Session Types
	Modules and Functions
	Terms and Expressions

	Session Typing
	Expression Typing
	Pattern Typing
	Term Typing
	Module Typing

	Typing in Action
	Semantics
	Conclusion

	Metatheory
	Validating the Transition Semantics
	Properties of Typing
	Session Fidelity
	Conclusion

	Elixir Implementation
	Integration within Elixir
	Uniting Elixir and Our Model
	Flexibility
	Improving the Type System from a Practical Perspective
	Case Study
	Discussion
	Conclusion

	Related Work
	Session Types for Actor-Based Languages
	Session Types for Channel-Based Languages
	Type System for Elixir

	Conclusion
	Future Work

	References
	Additional Definitions
	Proofs
	Complete Example

